This is the Windows app named whisper-timestamped whose latest release can be downloaded as v1.15.9sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named whisper-timestamped with OnWorks for free.
Follow these instructions in order to run this app:
- 1. Downloaded this application in your PC.
- 2. Enter in our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.
- 3. Upload this application in such filemanager.
- 4. Start any OS OnWorks online emulator from this website, but better Windows online emulator.
- 5. From the OnWorks Windows OS you have just started, goto our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.
- 6. Download the application and install it.
- 7. Download Wine from your Linux distributions software repositories. Once installed, you can then double-click the app to run them with Wine. You can also try PlayOnLinux, a fancy interface over Wine that will help you install popular Windows programs and games.
Wine is a way to run Windows software on Linux, but with no Windows required. Wine is an open-source Windows compatibility layer that can run Windows programs directly on any Linux desktop. Essentially, Wine is trying to re-implement enough of Windows from scratch so that it can run all those Windows applications without actually needing Windows.
SCREENSHOTS
Ad
whisper-timestamped
DESCRIPTION
Multilingual Automatic Speech Recognition with word-level timestamps and confidence. Whisper is a set of multi-lingual, robust speech recognition models trained by OpenAI that achieve state-of-the-art results in many languages. Whisper models were trained to predict approximate timestamps on speech segments (most of the time with 1-second accuracy), but they cannot originally predict word timestamps. This repository proposes an implementation to predict word timestamps and provide a more accurate estimation of speech segments when transcribing with Whisper models. Besides, a confidence score is assigned to each word and each segment.
Features
- The start/end estimation is more accurate
- Documentation available
- Confidence scores are assigned to each word
- If possible (without beam search...), no additional inference steps are required to predict word timestamps (word alignment is done on the fly after each speech segment is decoded)
- Special care has been taken regarding memory usage
- Light installation for CPU
- Plot of word alignment
Programming Language
Python
Categories
This is an application that can also be fetched from https://sourceforge.net/projects/whisper-timestamped.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.