This is the Windows app named Awesome-Quant whose latest release can be downloaded as awesome-quantsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Awesome-Quant with OnWorks for free.
اتبع هذه التعليمات لتشغيل هذا التطبيق:
- 1. قم بتنزيل هذا التطبيق على جهاز الكمبيوتر الخاص بك.
- 2. أدخل في مدير الملفات الخاص بنا https://www.onworks.net/myfiles.php؟username=XXXXX باسم المستخدم الذي تريده.
- 3. تحميل هذا التطبيق في هذا الملف.
- 4. ابدأ تشغيل أي محاكي لنظام التشغيل OnWorks عبر الإنترنت من موقع الويب هذا ، ولكن أفضل محاكي Windows عبر الإنترنت.
- 5. من نظام التشغيل OnWorks Windows الذي بدأته للتو ، انتقل إلى مدير الملفات الخاص بنا https://www.onworks.net/myfiles.php؟username=XXXXX مع اسم المستخدم الذي تريده.
- 6. قم بتنزيل التطبيق وتثبيته.
- 7. قم بتنزيل Wine من مستودعات برامج توزيعات Linux الخاصة بك. بمجرد التثبيت ، يمكنك النقر نقرًا مزدوجًا فوق التطبيق لتشغيله باستخدام Wine. يمكنك أيضًا تجربة PlayOnLinux ، وهي واجهة رائعة على Wine والتي ستساعدك على تثبيت برامج وألعاب Windows الشائعة.
يعد Wine طريقة لتشغيل برامج Windows على نظام Linux ، ولكن بدون الحاجة إلى Windows. Wine عبارة عن طبقة توافق Windows مفتوحة المصدر يمكنها تشغيل برامج Windows مباشرة على أي سطح مكتب Linux. بشكل أساسي ، يحاول Wine إعادة تنفيذ ما يكفي من Windows من البداية حتى يتمكن من تشغيل جميع تطبيقات Windows دون الحاجة إلى Windows بالفعل.
SCREENSHOTS
Ad
رائع-كمي
الوصف
awesome-quant is a curated list (“awesome list”) of libraries, packages, articles, and resources for quantitative finance (“quants”). It includes tools, frameworks, research papers, blogs, datasets, etc. It aims to help people working in algorithmic trading, quant investing, financial engineering, etc., find useful open source or educational resources. Licensed under typical “awesome” list standards.
شرح المميزات:
- Collections of quant-finance libraries & packages across multiple languages (Python, R, C++, etc.)
- Links to datasets and data sources for financial / market data
- Resources for research, articles, blogs, educational content in quant finance
- Frameworks/platforms, backtesting tools, risk management, portfolio optimization tools included
- Curated; quality filtered; community contributions via pull requests are accepted
- Tagged / organized by topic: algorithmic trading, time series, data visualization etc.
لغة البرمجة
Python
التصنيفات
This is an application that can also be fetched from https://sourceforge.net/projects/awesome-quant.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.