This is the Linux app named Metaseq whose latest release can be downloaded as metaseqsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Metaseq with OnWorks for free.
Befolgen Sie diese Anweisungen, um diese App auszuführen:
- 1. Diese Anwendung auf Ihren PC heruntergeladen.
- 2. Geben Sie in unserem Dateimanager https://www.onworks.net/myfiles.php?username=XXXXX den gewünschten Benutzernamen ein.
- 3. Laden Sie diese Anwendung in einem solchen Dateimanager hoch.
- 4. Starten Sie den OnWorks Linux-Online- oder Windows-Online-Emulator oder den MACOS-Online-Emulator von dieser Website.
- 5. Rufen Sie vom gerade gestarteten OnWorks Linux-Betriebssystem aus unseren Dateimanager https://www.onworks.net/myfiles.php?username=XXXXX mit dem gewünschten Benutzernamen auf.
- 6. Laden Sie die Anwendung herunter, installieren Sie sie und führen Sie sie aus.
SCREENSHOTS
Ad
Metaseq
BESCHREIBUNG
Metaseq is a flexible, high-performance framework for training and serving large-scale sequence models, such as language models, translation systems, and instruction-tuned LLMs. Built on top of PyTorch, it provides distributed training, model sharding, mixed-precision computation, and memory-efficient checkpointing to support models with hundreds of billions of parameters. The framework was used internally at Meta to train models like OPT (Open Pre-trained Transformer) and serves as a reference implementation for scaling transformer architectures efficiently across GPUs and nodes. It supports both pretraining and fine-tuning workflows with data pipelines for text, multilingual corpora, and custom tokenization schemes. Metaseq also includes APIs for evaluation, generation, and model serving, enabling seamless transitions from training to inference.
Eigenschaften
- Distributed training and inference for large-scale transformer models
- Support for model, data, and pipeline parallelism across multiple GPUs and nodes
- Mixed-precision training and memory-efficient checkpointing
- Pretraining and fine-tuning workflows for text and multilingual data
- APIs for text generation, evaluation, and serving large models
- Reference implementation for Meta’s OPT and other large language models
Programmiersprache
Python
Kategorien
This is an application that can also be fetched from https://sourceforge.net/projects/metaseq.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.