This is the Linux app named PyTorch GAN Zoo whose latest release can be downloaded as pytorch_GAN_zoosourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named PyTorch GAN Zoo with OnWorks for free.
Befolgen Sie diese Anweisungen, um diese App auszuführen:
- 1. Diese Anwendung auf Ihren PC heruntergeladen.
- 2. Geben Sie in unserem Dateimanager https://www.onworks.net/myfiles.php?username=XXXXX den gewünschten Benutzernamen ein.
- 3. Laden Sie diese Anwendung in einem solchen Dateimanager hoch.
- 4. Starten Sie den OnWorks Linux-Online- oder Windows-Online-Emulator oder den MACOS-Online-Emulator von dieser Website.
- 5. Rufen Sie vom gerade gestarteten OnWorks Linux-Betriebssystem aus unseren Dateimanager https://www.onworks.net/myfiles.php?username=XXXXX mit dem gewünschten Benutzernamen auf.
- 6. Laden Sie die Anwendung herunter, installieren Sie sie und führen Sie sie aus.
SCREENSHOTS
Ad
PyTorch GAN Zoo
BESCHREIBUNG
PyTorch GAN Zoo is a comprehensive open research toolbox designed for experimenting with and developing Generative Adversarial Networks (GANs) using PyTorch. The project provides modular implementations of popular GAN architectures, including Progressive Growing of GANs (PGAN), DCGAN, and an experimental StyleGAN version. It is built to support both researchers and developers who want to train, evaluate, and extend GANs efficiently across diverse datasets such as CelebA-HQ, FashionGen, DTD, and CIFAR-10. In addition to core GAN training, the repository includes tools for model evaluation, such as Inception Score and SWD metrics, as well as advanced features like GDPP for diverse generation and AC-GAN conditioning for class-specific synthesis. The framework also supports “inspirational generation,” enabling style or content transfer from reference images through pre-trained models.
Eigenschaften
- Implements multiple GAN architectures including PGAN, DCGAN, and StyleGAN
- Supports advanced GAN methods such as GDPP loss and AC-GAN conditioning
- Includes evaluation metrics like SWD and Inception Score
- Provides pretrained checkpoints accessible via torch.hub
- Enables “inspirational generation” from reference images using feature extraction
- Compatible with popular image datasets including CelebA-HQ, FashionGen, and CIFAR-10
Programmiersprache
Python
Kategorien
This is an application that can also be fetched from https://sourceforge.net/projects/pytorch-gan-zoo.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.