GoGPT Best VPN GoSearch

OnWorks-Favicon

ResNeXt download for Windows

Free download ResNeXt Windows app to run online win Wine in Ubuntu online, Fedora online or Debian online

This is the Windows app named ResNeXt whose latest release can be downloaded as ResNeXtsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

Download and run online this app named ResNeXt with OnWorks for free.

Befolgen Sie diese Anweisungen, um diese App auszuführen:

- 1. Diese Anwendung auf Ihren PC heruntergeladen.

- 2. Geben Sie in unserem Dateimanager https://www.onworks.net/myfiles.php?username=XXXXX den gewünschten Benutzernamen ein.

- 3. Laden Sie diese Anwendung in einem solchen Dateimanager hoch.

- 4. Starten Sie einen beliebigen OS OnWorks-Online-Emulator von dieser Website, aber einen besseren Windows-Online-Emulator.

- 5. Rufen Sie vom gerade gestarteten OnWorks Windows-Betriebssystem unseren Dateimanager https://www.onworks.net/myfiles.php?username=XXXXX mit dem gewünschten Benutzernamen auf.

- 6. Laden Sie die Anwendung herunter und installieren Sie sie.

- 7. Laden Sie Wine aus den Software-Repositorys Ihrer Linux-Distributionen herunter. Nach der Installation können Sie dann auf die App doppelklicken, um sie mit Wine auszuführen. Sie können auch PlayOnLinux ausprobieren, eine schicke Schnittstelle über Wine, die Ihnen bei der Installation beliebter Windows-Programme und -Spiele hilft.

Wine ist eine Möglichkeit, Windows-Software unter Linux auszuführen, jedoch ohne Windows. Wine ist eine Open-Source-Windows-Kompatibilitätsschicht, die Windows-Programme direkt auf jedem Linux-Desktop ausführen kann. Im Wesentlichen versucht Wine, genügend Windows von Grund auf neu zu implementieren, damit alle diese Windows-Anwendungen ausgeführt werden können, ohne dass Windows tatsächlich benötigt wird.

SCREENSHOTS

Ad


ResNeXt


BESCHREIBUNG

ResNeXt is a deep neural network architecture for image classification built on the idea of aggregated residual transformations. Instead of simply increasing depth or width, ResNeXt introduces a new dimension called cardinality, which refers to the number of parallel transformation paths (i.e. the number of “branches”) that are aggregated together. Each branch is a small transformation (e.g. bottleneck block) and their outputs are summed—this enables richer representation without excessive parameter blowup. The design is modular and homogeneous, making it relatively easy to scale (by tuning cardinality, width, depth) and adopt in existing residual frameworks. The official repository offers a Torch (Lua) implementation with code for training, evaluation, and pretrained models on ImageNet. In practice, ResNeXt models often outperform standard ResNet models of comparable complexity.



Eigenschaften

  • Aggregated residual transformations combining multiple parallel branches
  • Introduces “cardinality” as a new architectural dimension
  • Modular bottleneck blocks with easy scaling across width/depth/cardinality
  • Torch implementation with training and evaluation scripts
  • Pretrained models for ImageNet classification
  • Compatibility with residual architectures and straightforward integration


Programmiersprache

Lua


Kategorien

Bibliotheken für neuronale Netze

This is an application that can also be fetched from https://sourceforge.net/projects/resnext.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.


Kostenlose Server & Workstations

Laden Sie Windows- und Linux-Apps herunter

Linux-Befehle

Ad




×
Werbung
❤ ️Hier einkaufen, buchen oder kaufen – kostenlos, damit die Dienste kostenlos bleiben.