GoGPT Best VPN GoSearch

OnWorks-Favicon

Uncertainty Baselines download for Windows

Free download Uncertainty Baselines Windows app to run online win Wine in Ubuntu online, Fedora online or Debian online

This is the Windows app named Uncertainty Baselines whose latest release can be downloaded as uncertainty-baselinessourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

Download and run online this app named Uncertainty Baselines with OnWorks for free.

Befolgen Sie diese Anweisungen, um diese App auszuführen:

- 1. Diese Anwendung auf Ihren PC heruntergeladen.

- 2. Geben Sie in unserem Dateimanager https://www.onworks.net/myfiles.php?username=XXXXX den gewünschten Benutzernamen ein.

- 3. Laden Sie diese Anwendung in einem solchen Dateimanager hoch.

- 4. Starten Sie einen beliebigen OS OnWorks-Online-Emulator von dieser Website, aber einen besseren Windows-Online-Emulator.

- 5. Rufen Sie vom gerade gestarteten OnWorks Windows-Betriebssystem unseren Dateimanager https://www.onworks.net/myfiles.php?username=XXXXX mit dem gewünschten Benutzernamen auf.

- 6. Laden Sie die Anwendung herunter und installieren Sie sie.

- 7. Laden Sie Wine aus den Software-Repositorys Ihrer Linux-Distributionen herunter. Nach der Installation können Sie dann auf die App doppelklicken, um sie mit Wine auszuführen. Sie können auch PlayOnLinux ausprobieren, eine schicke Schnittstelle über Wine, die Ihnen bei der Installation beliebter Windows-Programme und -Spiele hilft.

Wine ist eine Möglichkeit, Windows-Software unter Linux auszuführen, jedoch ohne Windows. Wine ist eine Open-Source-Windows-Kompatibilitätsschicht, die Windows-Programme direkt auf jedem Linux-Desktop ausführen kann. Im Wesentlichen versucht Wine, genügend Windows von Grund auf neu zu implementieren, damit alle diese Windows-Anwendungen ausgeführt werden können, ohne dass Windows tatsächlich benötigt wird.

SCREENSHOTS

Ad


Uncertainty Baselines


BESCHREIBUNG

Uncertainty Baselines is a collection of strong, well-documented training pipelines that make it straightforward to evaluate predictive uncertainty in modern machine learning models. Rather than offering toy scripts, it provides end-to-end recipes—data input, model architectures, training loops, evaluation metrics, and logging—so results are comparable across runs and research groups. The library spans canonical modalities and tasks, from image classification and NLP to tabular problems, with baselines that cover both deterministic and probabilistic approaches. Techniques include deep ensembles, Monte Carlo dropout, temperature scaling, stochastic variational inference, heteroscedastic heads, and out-of-distribution detection workflows. Each baseline emphasizes reproducibility: fixed seeds, standard splits, and strong metrics such as calibration error, AUROC for OOD, and accuracy under shift.



Eigenschaften

  • End-to-end, reproducible pipelines for uncertainty evaluation
  • Coverage of ensembles, MC dropout, SVI, and calibration methods
  • Standardized metrics for OOD detection and calibration quality
  • Baselines across vision, language, and tabular tasks
  • Clear configuration files and logging for fair comparisons
  • Strong defaults that can be extended for new research ideas


Programmiersprache

Python


Kategorien

Admin-Vorlagen

This is an application that can also be fetched from https://sourceforge.net/projects/uncertainty-baselines.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.


Kostenlose Server & Workstations

Laden Sie Windows- und Linux-Apps herunter

Linux-Befehle

Ad




×
Werbung
❤ ️Hier einkaufen, buchen oder kaufen – kostenlos, damit die Dienste kostenlos bleiben.