This is the Linux app named DeepSDF whose latest release can be downloaded as DeepSDFsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named DeepSDF with OnWorks for free.
Siga estas instrucciones para ejecutar esta aplicación:
- 1. Descargue esta aplicación en su PC.
- 2. Ingrese en nuestro administrador de archivos https://www.onworks.net/myfiles.php?username=XXXXX con el nombre de usuario que desee.
- 3. Cargue esta aplicación en dicho administrador de archivos.
- 4. Inicie el emulador en línea OnWorks Linux o Windows en línea o el emulador en línea MACOS desde este sitio web.
- 5. Desde el SO OnWorks Linux que acaba de iniciar, vaya a nuestro administrador de archivos https://www.onworks.net/myfiles.php?username=XXXXX con el nombre de usuario que desee.
- 6. Descarga la aplicación, instálala y ejecútala.
SCREENSHOTS
Ad
DeepSDF
DESCRIPCIÓN
DeepSDF is a deep learning framework for continuous 3D shape representation using Signed Distance Functions (SDFs), as presented in the CVPR 2019 paper DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation by Park et al. The framework learns a continuous implicit function that maps 3D coordinates to their corresponding signed distances from object surfaces, allowing compact, high-fidelity shape modeling. Unlike traditional discrete voxel grids or meshes, DeepSDF encodes shapes as continuous neural representations that can be smoothly interpolated and used for reconstruction, generation, and analysis. The repository provides complete tooling for preprocessing mesh datasets (e.g., ShapeNet), training DeepSDF models, reconstructing meshes from learned latent codes, and quantitatively evaluating results with metrics such as Chamfer Distance and Earth Mover’s Distance.
Caracteristicas
- Learns continuous signed distance functions for compact 3D shape representation
- End-to-end training pipeline with configurable experiments and checkpoints
- Supports preprocessing, reconstruction, and evaluation for ShapeNet and other datasets
- Modular experiment directory structure for reproducibility and easy visualization
- Includes C++ utilities for mesh preprocessing and surface/SDF sampling
- Provides evaluation scripts for Chamfer and Earth Mover’s Distance metrics
Lenguaje de programación
C ++, Python
Categorías
This is an application that can also be fetched from https://sourceforge.net/projects/deepsdf.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.