GoGPT Best VPN GoSearch

icono de página de OnWorks

benchm-ml download for Windows

Free download benchm-ml Windows app to run online win Wine in Ubuntu online, Fedora online or Debian online

This is the Windows app named benchm-ml whose latest release can be downloaded as benchm-mlsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

Download and run online this app named benchm-ml with OnWorks for free.

Siga estas instrucciones para ejecutar esta aplicación:

- 1. Descargue esta aplicación en su PC.

- 2. Ingrese en nuestro administrador de archivos https://www.onworks.net/myfiles.php?username=XXXXX con el nombre de usuario que desee.

- 3. Cargue esta aplicación en dicho administrador de archivos.

- 4. Inicie cualquier emulador en línea de OS OnWorks desde este sitio web, pero mejor emulador en línea de Windows.

- 5. Desde el sistema operativo OnWorks Windows que acaba de iniciar, vaya a nuestro administrador de archivos https://www.onworks.net/myfiles.php?username=XXXXX con el nombre de usuario que desee.

- 6. Descarga la aplicación e instálala.

- 7. Descargue Wine desde los repositorios de software de sus distribuciones de Linux. Una vez instalada, puede hacer doble clic en la aplicación para ejecutarla con Wine. También puedes probar PlayOnLinux, una elegante interfaz sobre Wine que te ayudará a instalar programas y juegos populares de Windows.

Wine es una forma de ejecutar software de Windows en Linux, pero no requiere Windows. Wine es una capa de compatibilidad de Windows de código abierto que puede ejecutar programas de Windows directamente en cualquier escritorio de Linux. Esencialmente, Wine está tratando de volver a implementar una cantidad suficiente de Windows desde cero para poder ejecutar todas esas aplicaciones de Windows sin necesidad de Windows.

SCREENSHOTS

Ad


bancom-ml


DESCRIPCIÓN

This repository is designed to provide a minimal benchmark framework comparing commonly used machine learning libraries in terms of scalability, speed, and classification accuracy. The focus is on binary classification tasks without missing data, where inputs can be numeric or categorical (after one-hot encoding). It targets large scale settings by varying the number of observations (n) up to millions and the number of features (after expansion) to about a thousand, to stress test different implementations. The benchmarks cover algorithms like logistic regression, random forest, gradient boosting, and deep neural networks, and they compare across toolkits such as scikit-learn, R packages, xgboost, H2O, Spark MLlib, etc. The repository is structured in logical folders (e.g. “1-linear”, “2-rf”, “3-boosting”, “4-DL”) each corresponding to algorithm categories.



Caracteristicas

  • Comparative benchmarks across ML toolkits (scikit-learn, R, H2O, xgboost, Spark MLlib)
  • Algorithm coverage: logistic regression, random forests, boosting, deep neural nets
  • Scalable testing with large n (e.g. 10K → 10M) and p (~1K)
  • Synthetic data generation and real dataset integration (e.g. Higgs)
  • Structured folder organization by algorithm type
  • Runtime, memory, and accuracy measurement tools to compare implementations


Lenguaje de programación

R


Categorías

Bibliotecas

This is an application that can also be fetched from https://sourceforge.net/projects/benchm-ml.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.


Servidores y estaciones de trabajo gratuitos

Descargar aplicaciones de Windows y Linux

Comandos de Linux

Ad




×
Anuncio
❤ ️Compre, reserve o adquiera aquí: sin costo, ayuda a mantener los servicios gratuitos.