This is the Linux app named AWS SDK for pandas whose latest release can be downloaded as awswrangler-layer-3.13.0-py3.13-arm64.zip. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named AWS SDK for pandas with OnWorks for free.
Suivez ces instructions pour exécuter cette application :
- 1. Téléchargé cette application sur votre PC.
- 2. Entrez dans notre gestionnaire de fichiers https://www.onworks.net/myfiles.php?username=XXXXX avec le nom d'utilisateur que vous voulez.
- 3. Téléchargez cette application dans ce gestionnaire de fichiers.
- 4. Démarrez l'émulateur en ligne OnWorks Linux ou Windows en ligne ou l'émulateur en ligne MACOS à partir de ce site Web.
- 5. Depuis le système d'exploitation OnWorks Linux que vous venez de démarrer, accédez à notre gestionnaire de fichiers https://www.onworks.net/myfiles.php?username=XXXXX avec le nom d'utilisateur que vous souhaitez.
- 6. Téléchargez l'application, installez-la et exécutez-la.
CAPTURES D'ÉCRAN
Ad
SDK AWS pour les pandas
DESCRIPTION
aws-sdk-pandas (formerly AWS Data Wrangler) bridges pandas with the AWS analytics stack so DataFrames flow seamlessly to and from cloud services. With a few lines of code, you can read from and write to Amazon S3 in Parquet/CSV/JSON/ORC, register tables in the AWS Glue Data Catalog, and query with Amazon Athena directly into pandas. The library abstracts efficient patterns like partitioning, compression, and vectorized I/O so you get performant data lake operations without hand-rolling boilerplate. It also supports Redshift, OpenSearch, and other services, enabling ETL tasks that blend SQL engines and Python transformations. Operational helpers handle IAM, sessions, and concurrency while exposing knobs for encryption, versioning, and catalog consistency. The result is a productive workflow that keeps your analytics in Python while leveraging AWS-native storage and query engines at scale.
Fonctionnement
- High-level read/write of DataFrames to S3 with Parquet, CSV, JSON, and ORC
- Tight integration with AWS Glue Catalog and Athena for schema and SQL queries
- Convenience methods for Redshift COPY/UNLOAD and data migration patterns
- Automatic handling of partitions, compression, and columnar formats
- Session and IAM helpers with options for encryption and versioning
- Scalable I/O paths optimized for large data lake workloads
Langage de programmation
Python
Catégories
This is an application that can also be fetched from https://sourceforge.net/projects/aws-sdk-for-pandas.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.
