This is the Linux app named Deep Learning Is Nothing whose latest release can be downloaded as Deep-Learning-Is-Nothingsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Deep Learning Is Nothing with OnWorks for free.
Suivez ces instructions pour exécuter cette application :
- 1. Téléchargé cette application sur votre PC.
- 2. Entrez dans notre gestionnaire de fichiers https://www.onworks.net/myfiles.php?username=XXXXX avec le nom d'utilisateur que vous voulez.
- 3. Téléchargez cette application dans ce gestionnaire de fichiers.
- 4. Démarrez l'émulateur en ligne OnWorks Linux ou Windows en ligne ou l'émulateur en ligne MACOS à partir de ce site Web.
- 5. Depuis le système d'exploitation OnWorks Linux que vous venez de démarrer, accédez à notre gestionnaire de fichiers https://www.onworks.net/myfiles.php?username=XXXXX avec le nom d'utilisateur que vous souhaitez.
- 6. Téléchargez l'application, installez-la et exécutez-la.
CAPTURES D'ÉCRAN
Ad
L'apprentissage profond n'est rien
DESCRIPTION
Deep-Learning-Is-Nothing presents deep learning concepts in an approachable, from-scratch style that demystifies the stack behind modern models. It typically begins with linear algebra, calculus, and optimization refreshers before moving to perceptrons, multilayer networks, and gradient-based training. Implementations favor small, readable examples—often NumPy first—to show how forward and backward passes work without depending solely on high-level frameworks. Once the fundamentals are clear, the material extends to CNNs, RNNs, and attention mechanisms, explaining why each architecture suits particular tasks. Practical sections cover data pipelines, regularization, and evaluation, emphasizing reproducibility and debugging techniques. The goal is to replace buzzwords with intuition so learners can reason about architectures and training dynamics with confidence.
Comment ça marche
- Math and optimization refreshers tied directly to code
- From-scratch implementations that reveal forward and backward passes
- Stepwise progression from MLPs to CNNs, RNNs, and attention
- Practical guidance on data prep, regularization, and evaluation
- Readable examples that bridge NumPy and framework usage
- Emphasis on intuition and troubleshooting over boilerplate
Catégories
This is an application that can also be fetched from https://sourceforge.net/projects/deep-learning-is-not.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.