This is the Linux app named Gemma in PyTorch whose latest release can be downloaded as gemma_pytorchsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Gemma in PyTorch with OnWorks for free.
Suivez ces instructions pour exécuter cette application :
- 1. Téléchargé cette application sur votre PC.
- 2. Entrez dans notre gestionnaire de fichiers https://www.onworks.net/myfiles.php?username=XXXXX avec le nom d'utilisateur que vous voulez.
- 3. Téléchargez cette application dans ce gestionnaire de fichiers.
- 4. Démarrez l'émulateur en ligne OnWorks Linux ou Windows en ligne ou l'émulateur en ligne MACOS à partir de ce site Web.
- 5. Depuis le système d'exploitation OnWorks Linux que vous venez de démarrer, accédez à notre gestionnaire de fichiers https://www.onworks.net/myfiles.php?username=XXXXX avec le nom d'utilisateur que vous souhaitez.
- 6. Téléchargez l'application, installez-la et exécutez-la.
CAPTURES D'ÉCRAN
Ad
Gemma dans PyTorch
DESCRIPTION
gemma_pytorch provides the official PyTorch reference for running and fine-tuning Google’s Gemma family of open models. It includes model definitions, configuration files, and loading utilities for multiple parameter scales, enabling quick evaluation and downstream adaptation. The repository demonstrates text generation pipelines, tokenizer setup, quantization paths, and adapters for low-rank or parameter-efficient fine-tuning. Example notebooks walk through instruction tuning and evaluation so teams can benchmark and iterate rapidly. The code is organized to be legible and hackable, exposing attention blocks, positional encodings, and head configurations. With standard PyTorch abstractions, it integrates easily into existing training loops, loggers, and evaluation harnesses.
Comment ça marche
- PyTorch implementations and configs for Gemma model variants
- Ready-to-use generation, tokenization, and checkpoint loading
- Drop-in modules compatible with common PyTorch stacks
- Example notebooks for tuning and evaluation
- Quantization and inference optimization paths
- Parameter-efficient fine-tuning adapters and examples
Langage de programmation
Python
Catégories
This is an application that can also be fetched from https://sourceforge.net/projects/gemma-in-pytorch.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.