This is the Linux app named MUSE whose latest release can be downloaded as MUSEsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named MUSE with OnWorks for free.
Suivez ces instructions pour exécuter cette application :
- 1. Téléchargé cette application sur votre PC.
- 2. Entrez dans notre gestionnaire de fichiers https://www.onworks.net/myfiles.php?username=XXXXX avec le nom d'utilisateur que vous voulez.
- 3. Téléchargez cette application dans ce gestionnaire de fichiers.
- 4. Démarrez l'émulateur en ligne OnWorks Linux ou Windows en ligne ou l'émulateur en ligne MACOS à partir de ce site Web.
- 5. Depuis le système d'exploitation OnWorks Linux que vous venez de démarrer, accédez à notre gestionnaire de fichiers https://www.onworks.net/myfiles.php?username=XXXXX avec le nom d'utilisateur que vous souhaitez.
- 6. Téléchargez l'application, installez-la et exécutez-la.
CAPTURES D'ÉCRAN
Ad
MUSE
DESCRIPTION
MUSE is a framework for learning multilingual word embeddings that live in a shared space, enabling bilingual lexicon induction, cross-lingual retrieval, and zero-shot transfer. It supports both supervised alignment with seed dictionaries and unsupervised alignment that starts without parallel data by using adversarial initialization followed by Procrustes refinement. The code can align pre-trained monolingual embeddings (such as fastText) across dozens of languages and provides standardized evaluation scripts and dictionaries. By mapping languages into a common vector space, MUSE makes it straightforward to build cross-lingual applications where resources are scarce for some languages. The training and evaluation pipeline is lightweight and fast, so experimenting with different languages or initialization strategies is easy. Beyond dictionary induction, the learned embeddings are often used as building blocks for downstream tasks like classification, retrieval, or machine translation.
Comment ça marche
- Supervised and unsupervised cross-lingual embedding alignment
- Adversarial initialization with Procrustes refinement
- Ready-made evaluation scripts and bilingual dictionaries
- Support for dozens of languages and fast experimentation
- Works with common monolingual embeddings like fastText
- Outputs reusable aligned spaces for retrieval and transfer
Langage de programmation
Python
Catégories
This is an application that can also be fetched from https://sourceforge.net/projects/muse.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.