This is the Linux app named Shumai whose latest release can be downloaded as shumaisourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Shumai with OnWorks for free.
Suivez ces instructions pour exécuter cette application :
- 1. Téléchargé cette application sur votre PC.
- 2. Entrez dans notre gestionnaire de fichiers https://www.onworks.net/myfiles.php?username=XXXXX avec le nom d'utilisateur que vous voulez.
- 3. Téléchargez cette application dans ce gestionnaire de fichiers.
- 4. Démarrez l'émulateur en ligne OnWorks Linux ou Windows en ligne ou l'émulateur en ligne MACOS à partir de ce site Web.
- 5. Depuis le système d'exploitation OnWorks Linux que vous venez de démarrer, accédez à notre gestionnaire de fichiers https://www.onworks.net/myfiles.php?username=XXXXX avec le nom d'utilisateur que vous souhaitez.
- 6. Téléchargez l'application, installez-la et exécutez-la.
CAPTURES D'ÉCRAN
Ad
Shumaï
DESCRIPTION
Shumai is an experimental differentiable tensor library for TypeScript and JavaScript, developed by Facebook Research. It provides a high-performance framework for numerical computing and machine learning within modern JavaScript runtimes. Built on Bun and Flashlight, with ArrayFire as its numerical backend, Shumai brings GPU-accelerated tensor operations, automatic differentiation, and scientific computing tools directly to JavaScript developers. It allows seamless integration of machine learning, deep learning, and custom differentiable programs into web-based or server-side environments without relying on Python frameworks. The library supports matrix operations, gradient computation, and tensor conversions with intuitive APIs and near-native speed, thanks to Bun’s low-overhead FFI bindings. It can automatically leverage GPU acceleration on Linux (via CUDA) and CPU computation on macOS.
Comment ça marche
- Fast GPU-accelerated tensor operations powered by ArrayFire and Flashlight
- Automatic differentiation with flexible gradient control and detachment
- Supports matrix multiplication, elementwise operations, and data conversion between JS arrays and tensors
- Built with Bun for high-speed JIT and minimal FFI overhead
- Cross-platform support for macOS (CPU) and Linux (CUDA GPU)
- Integrated statistics logging, profiling, and memory tuning APIs
Langage de programmation
C++, Python, TypeScript
Catégories
This is an application that can also be fetched from https://sourceforge.net/projects/shumai.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.