This is the Linux app named TensorStore whose latest release can be downloaded as tensorstorev0.1.78sourcecode.zip. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named TensorStore with OnWorks for free.
Suivez ces instructions pour exécuter cette application :
- 1. Téléchargé cette application sur votre PC.
- 2. Entrez dans notre gestionnaire de fichiers https://www.onworks.net/myfiles.php?username=XXXXX avec le nom d'utilisateur que vous voulez.
- 3. Téléchargez cette application dans ce gestionnaire de fichiers.
- 4. Démarrez l'émulateur en ligne OnWorks Linux ou Windows en ligne ou l'émulateur en ligne MACOS à partir de ce site Web.
- 5. Depuis le système d'exploitation OnWorks Linux que vous venez de démarrer, accédez à notre gestionnaire de fichiers https://www.onworks.net/myfiles.php?username=XXXXX avec le nom d'utilisateur que vous souhaitez.
- 6. Téléchargez l'application, installez-la et exécutez-la.
CAPTURES D'ÉCRAN
Ad
TensorStore
DESCRIPTION
TensorStore is a high-performance library for reading and writing N-dimensional arrays that live in many different storage systems, from local files to cloud object stores. It separates the logical view (shape, dtype, chunking) from the physical layout so the same code can target Zarr, N5, TIFF pyramids, or custom backends. Rich indexing, slicing, and broadcasting operations make it feel like a familiar array API, while asynchronous I/O pipelines stream chunks efficiently in parallel. Transactional semantics allow atomic updates and consistent snapshots, which is essential for large, shared datasets used by ML and scientific workflows. The library is engineered for scalability—background caching, chunk sharding, and retryable operations keep throughput high even over unreliable networks. With language bindings, it fits into Python-heavy analysis pipelines while retaining a fast C++ core.
Comment ça marche
- Uniform array API over many on-disk and cloud formats
- Asynchronous, parallel chunked I/O with caching
- Transactional reads and writes for atomic updates
- Flexible indexing, slicing, and dtype conversions
- Pluggable drivers for Zarr, N5, TIFF, and custom backends
- C++ core with Python bindings for ML and science workflows
Langage de programmation
C + +
Catégories
This is an application that can also be fetched from https://sourceforge.net/projects/tensorstore.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.