GoGPT Best VPN GoSearch

ऑनवर्क्स फ़ेविकॉन

Flow Matching download for Windows

Free download Flow Matching Windows app to run online win Wine in Ubuntu online, Fedora online or Debian online

This is the Windows app named Flow Matching whose latest release can be downloaded as flow_matchingsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

Download and run online this app named Flow Matching with OnWorks for free.

इस ऐप को चलाने के लिए इन निर्देशों का पालन करें:

- 1. इस एप्लिकेशन को अपने पीसी में डाउनलोड करें।

- 2. हमारे फ़ाइल प्रबंधक में https://www.onworks.net/myfiles.php?username=XXXXX उस उपयोगकर्ता नाम के साथ दर्ज करें जो आप चाहते हैं।

- 3. इस एप्लिकेशन को ऐसे फाइल मैनेजर में अपलोड करें।

- 4. इस वेबसाइट से कोई भी ओएस ऑनवर्क्स ऑनलाइन एमुलेटर शुरू करें, लेकिन बेहतर विंडोज ऑनलाइन एमुलेटर।

- 5. ऑनवर्क्स विंडोज ओएस से आपने अभी शुरुआत की है, हमारे फाइल मैनेजर को https://www.onworks.net/myfiles.php?username=XXXXX उस यूजरनेम के साथ जाएं जो आप चाहते हैं।

- 6. एप्लिकेशन डाउनलोड करें और इसे इंस्टॉल करें।

- 7. अपने Linux वितरण सॉफ़्टवेयर रिपॉजिटरी से वाइन डाउनलोड करें। एक बार इंस्टॉल हो जाने पर, आप ऐप को वाइन के साथ चलाने के लिए डबल-क्लिक कर सकते हैं। आप PlayOnLinux को भी आज़मा सकते हैं, जो वाइन पर एक फैंसी इंटरफ़ेस है जो आपको लोकप्रिय विंडोज़ प्रोग्राम और गेम इंस्टॉल करने में मदद करेगा।

वाइन लिनक्स पर विंडोज सॉफ्टवेयर चलाने का एक तरीका है, लेकिन विंडोज की आवश्यकता नहीं है। वाइन एक ओपन-सोर्स विंडोज संगतता परत है जो किसी भी लिनक्स डेस्कटॉप पर सीधे विंडोज प्रोग्राम चला सकती है। अनिवार्य रूप से, वाइन खरोंच से पर्याप्त विंडोज़ को फिर से लागू करने की कोशिश कर रहा है ताकि वह उन सभी विंडोज़ अनुप्रयोगों को वास्तव में विंडोज़ की आवश्यकता के बिना चला सके।

स्क्रीनशॉट

Ad


प्रवाह मिलान


वर्णन

flow_matching is a PyTorch library implementing flow matching algorithms in both continuous and discrete settings, enabling generative modeling via matching vector fields rather than diffusion. The underlying idea is to parameterize a flow (a time-dependent vector field) that transports samples from a simple base distribution to a target distribution, and train via matching of flows without requiring score estimation or noisy corruption—this can lead to more efficient or stable generative training. The library supports both continuous-time flows (via differential equations) and discrete-time analogues, giving flexibility in design and tradeoffs. It provides examples across modalities (images, toy 2D distributions) to help users understand how to apply flow matching in practice. The codebase includes notebooks illustrating 2D flow matching, discrete flows, and Riemannian flow matching on curved manifolds (e.g. flat torus) for non-Euclidean support.



विशेषताएं

  • Continuous-time flow matching for generative modeling
  • Discrete flow matching methods for alternate tradeoffs
  • Support for Riemannian manifold flow matching (non-Euclidean geometries)
  • Example notebooks illustrating 2D flows, discrete flows, and manifold flows
  • PyTorch implementation with utilities and integration ready
  • Setup scripts, environment specification, and easy installation via setup.py


प्रोग्रामिंग भाषा

अजगर


श्रेणियाँ

एआई मॉडल

This is an application that can also be fetched from https://sourceforge.net/projects/flow-matching.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.


फ्री सर्वर और वर्कस्टेशन

विंडोज और लाइनेक्स एप डाउनलोड करें

लिनक्स कमांड

Ad




×
विज्ञापन
❤️यहां खरीदारी करें, बुक करें या खरीदें - कोई शुल्क नहीं, इससे सेवाएं निःशुल्क बनी रहती हैं।