This is the Windows app named PyCls whose latest release can be downloaded as Sweepcodeforstudyingmodelpopulationstatssourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named PyCls with OnWorks for free.
इस ऐप को चलाने के लिए इन निर्देशों का पालन करें:
- 1. इस एप्लिकेशन को अपने पीसी में डाउनलोड करें।
- 2. हमारे फ़ाइल प्रबंधक में https://www.onworks.net/myfiles.php?username=XXXXX उस उपयोगकर्ता नाम के साथ दर्ज करें जो आप चाहते हैं।
- 3. इस एप्लिकेशन को ऐसे फाइल मैनेजर में अपलोड करें।
- 4. इस वेबसाइट से कोई भी ओएस ऑनवर्क्स ऑनलाइन एमुलेटर शुरू करें, लेकिन बेहतर विंडोज ऑनलाइन एमुलेटर।
- 5. ऑनवर्क्स विंडोज ओएस से आपने अभी शुरुआत की है, हमारे फाइल मैनेजर को https://www.onworks.net/myfiles.php?username=XXXXX उस यूजरनेम के साथ जाएं जो आप चाहते हैं।
- 6. एप्लिकेशन डाउनलोड करें और इसे इंस्टॉल करें।
- 7. अपने Linux वितरण सॉफ़्टवेयर रिपॉजिटरी से वाइन डाउनलोड करें। एक बार इंस्टॉल हो जाने पर, आप ऐप को वाइन के साथ चलाने के लिए डबल-क्लिक कर सकते हैं। आप PlayOnLinux को भी आज़मा सकते हैं, जो वाइन पर एक फैंसी इंटरफ़ेस है जो आपको लोकप्रिय विंडोज़ प्रोग्राम और गेम इंस्टॉल करने में मदद करेगा।
वाइन लिनक्स पर विंडोज सॉफ्टवेयर चलाने का एक तरीका है, लेकिन विंडोज की आवश्यकता नहीं है। वाइन एक ओपन-सोर्स विंडोज संगतता परत है जो किसी भी लिनक्स डेस्कटॉप पर सीधे विंडोज प्रोग्राम चला सकती है। अनिवार्य रूप से, वाइन खरोंच से पर्याप्त विंडोज़ को फिर से लागू करने की कोशिश कर रहा है ताकि वह उन सभी विंडोज़ अनुप्रयोगों को वास्तव में विंडोज़ की आवश्यकता के बिना चला सके।
स्क्रीनशॉट
Ad
PyCls
वर्णन
pycls is a focused PyTorch codebase for image classification research that emphasizes reproducibility and strong, transparent baselines. It popularized families like RegNet and supports classic architectures (ResNet, ResNeXt) with clean implementations and consistent training recipes. The repository includes highly tuned schedules, augmentations, and regularization settings that make it straightforward to match reported accuracy without guesswork. Distributed training and mixed precision are first-class, enabling fast experiments on multi-GPU setups with simple, declarative configs. Model definitions are concise and modular, making it easy to prototype new blocks or swap backbones while keeping the rest of the pipeline unchanged. Pretrained weights and evaluation scripts cover common datasets, and the logging/metric stack is designed for quick comparison across runs. Practitioners use pycls both as a baseline factory and as a scaffold for new classification backbones.
विशेषताएं
- Reference implementations of ResNet/ResNeXt/RegNet families
- Reproducible training recipes with tuned schedules and augmentations
- Distributed and mixed-precision training out of the box
- Declarative configuration system and clean data pipelines
- Pretrained checkpoints and standardized evaluation scripts
- Minimal, modular model code for rapid architectural iteration
प्रोग्रामिंग भाषा
अजगर
श्रेणियाँ
This is an application that can also be fetched from https://sourceforge.net/projects/pycls.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.