This is the Windows app named ResNeXt whose latest release can be downloaded as ResNeXtsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named ResNeXt with OnWorks for free.
इस ऐप को चलाने के लिए इन निर्देशों का पालन करें:
- 1. इस एप्लिकेशन को अपने पीसी में डाउनलोड करें।
- 2. हमारे फ़ाइल प्रबंधक में https://www.onworks.net/myfiles.php?username=XXXXX उस उपयोगकर्ता नाम के साथ दर्ज करें जो आप चाहते हैं।
- 3. इस एप्लिकेशन को ऐसे फाइल मैनेजर में अपलोड करें।
- 4. इस वेबसाइट से कोई भी ओएस ऑनवर्क्स ऑनलाइन एमुलेटर शुरू करें, लेकिन बेहतर विंडोज ऑनलाइन एमुलेटर।
- 5. ऑनवर्क्स विंडोज ओएस से आपने अभी शुरुआत की है, हमारे फाइल मैनेजर को https://www.onworks.net/myfiles.php?username=XXXXX उस यूजरनेम के साथ जाएं जो आप चाहते हैं।
- 6. एप्लिकेशन डाउनलोड करें और इसे इंस्टॉल करें।
- 7. अपने Linux वितरण सॉफ़्टवेयर रिपॉजिटरी से वाइन डाउनलोड करें। एक बार इंस्टॉल हो जाने पर, आप ऐप को वाइन के साथ चलाने के लिए डबल-क्लिक कर सकते हैं। आप PlayOnLinux को भी आज़मा सकते हैं, जो वाइन पर एक फैंसी इंटरफ़ेस है जो आपको लोकप्रिय विंडोज़ प्रोग्राम और गेम इंस्टॉल करने में मदद करेगा।
वाइन लिनक्स पर विंडोज सॉफ्टवेयर चलाने का एक तरीका है, लेकिन विंडोज की आवश्यकता नहीं है। वाइन एक ओपन-सोर्स विंडोज संगतता परत है जो किसी भी लिनक्स डेस्कटॉप पर सीधे विंडोज प्रोग्राम चला सकती है। अनिवार्य रूप से, वाइन खरोंच से पर्याप्त विंडोज़ को फिर से लागू करने की कोशिश कर रहा है ताकि वह उन सभी विंडोज़ अनुप्रयोगों को वास्तव में विंडोज़ की आवश्यकता के बिना चला सके।
स्क्रीनशॉट
Ad
रेसनेक्स्ट
वर्णन
ResNeXt is a deep neural network architecture for image classification built on the idea of aggregated residual transformations. Instead of simply increasing depth or width, ResNeXt introduces a new dimension called cardinality, which refers to the number of parallel transformation paths (i.e. the number of “branches”) that are aggregated together. Each branch is a small transformation (e.g. bottleneck block) and their outputs are summed—this enables richer representation without excessive parameter blowup. The design is modular and homogeneous, making it relatively easy to scale (by tuning cardinality, width, depth) and adopt in existing residual frameworks. The official repository offers a Torch (Lua) implementation with code for training, evaluation, and pretrained models on ImageNet. In practice, ResNeXt models often outperform standard ResNet models of comparable complexity.
विशेषताएं
- Aggregated residual transformations combining multiple parallel branches
- Introduces “cardinality” as a new architectural dimension
- Modular bottleneck blocks with easy scaling across width/depth/cardinality
- Torch implementation with training and evaluation scripts
- Pretrained models for ImageNet classification
- Compatibility with residual architectures and straightforward integration
प्रोग्रामिंग भाषा
लुआ
श्रेणियाँ
This is an application that can also be fetched from https://sourceforge.net/projects/resnext.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.