This is the Linux app named MoCo v3 whose latest release can be downloaded as moco-v3sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named MoCo v3 with OnWorks for free.
Ikuti petunjuk ini untuk menjalankan aplikasi ini:
- 1. Download aplikasi ini di PC Anda.
- 2. Masuk ke file manager kami https://www.onworks.net/myfiles.php?username=XXXXX dengan username yang anda inginkan.
- 3. Upload aplikasi ini di filemanager tersebut.
- 4. Jalankan emulator online OnWorks Linux atau Windows online atau emulator online MACOS dari situs web ini.
- 5. Dari OS Linux OnWorks yang baru saja Anda mulai, buka file manager kami https://www.onworks.net/myfiles.php?username=XXXXX dengan nama pengguna yang Anda inginkan.
- 6. Download aplikasinya, install dan jalankan.
Tangkapan layar
Ad
MoCo v3
DESKRIPSI
MoCo v3 is a PyTorch reimplementation of Momentum Contrast v3 (MoCo v3), Facebook Research’s state-of-the-art self-supervised learning framework for visual representation learning using ResNet and Vision Transformer (ViT) backbones. Originally developed in TensorFlow for TPUs, this version faithfully reproduces the paper’s results on GPUs while offering an accessible and scalable PyTorch interface. MoCo v3 introduces improvements for training self-supervised ViTs by combining contrastive learning with transformer-based architectures, achieving strong linear and end-to-end fine-tuning performance on ImageNet benchmarks. The repository supports multi-node distributed training, automatic mixed precision, and linear scaling of learning rates for large-batch regimes. It also includes scripts for self-supervised pretraining, linear classification, and fine-tuning within the DeiT framework.
Fitur
- Compatible with ImageNet and standard vision benchmarks for transfer learning
- Configurable via command-line flags with scalable hyperparameters and batch settings
- Integrated scripts for self-supervised pretraining, linear evaluation, and DeiT fine-tuning
- Achieves strong ImageNet results (e.g., 74.6% linear top-1 on ResNet-50, 83.2% fine-tuned ViT-B)
- Supports large-scale multi-GPU distributed training with mixed precision
- PyTorch implementation of self-supervised MoCo v3 for ResNet and ViT models
Bahasa Pemrograman
Ular sanca
KATEGORI
This is an application that can also be fetched from https://sourceforge.net/projects/moco-v3.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.