Ini adalah aplikasi Linux bernama TensorNetwork yang rilis terbarunya dapat diunduh sebagai tensornetwork-0.4.6.tar.gz. Aplikasi ini dapat dijalankan secara daring di penyedia hosting gratis OnWorks untuk workstation.
Download and run online this app named TensorNetwork with OnWorks for free.
Ikuti petunjuk ini untuk menjalankan aplikasi ini:
- 1. Download aplikasi ini di PC Anda.
- 2. Masuk ke file manager kami https://www.onworks.net/myfiles.php?username=XXXXX dengan username yang anda inginkan.
- 3. Upload aplikasi ini di filemanager tersebut.
- 4. Jalankan emulator online OnWorks Linux atau Windows online atau emulator online MACOS dari situs web ini.
- 5. Dari OS Linux OnWorks yang baru saja Anda mulai, buka file manager kami https://www.onworks.net/myfiles.php?username=XXXXX dengan nama pengguna yang Anda inginkan.
- 6. Download aplikasinya, install dan jalankan.
Tangkapan layar
Ad
Jaringan Tensor
DESKRIPSI
TensorNetwork is a high-level library for building and contracting tensor networks—graphical factorizations of large tensors that underpin many algorithms in physics and machine learning. It abstracts networks as nodes and edges, then compiles efficient contraction orders across multiple numeric backends so users can focus on model structure rather than index bookkeeping. Common network families (MPS/TT, PEPS, MERA, tree networks) are expressed with concise APIs that encourage experimentation and comparison. The library provides automatic path finding and cost estimation, exposing when contractions will explode in memory and suggesting better orders. Because it supports backends such as NumPy, TensorFlow, PyTorch, and JAX, the same model can run on CPUs, GPUs, or TPUs with minimal code changes. Tutorials and visualization helpers make it easier to understand how network topology affects expressive power and computational cost.
Fitur
- Graph-based API for nodes, edges, and contractions
- Automatic path finding and contraction-cost estimation
- Ready-made builders for MPS/TT, PEPS, MERA, and tree networks
- Pluggable backends: NumPy, TensorFlow, PyTorch, JAX
- Visualization utilities for network structure and flows
- GPU/TPU acceleration with identical high-level code
Bahasa Pemrograman
Ular sanca
KATEGORI
This is an application that can also be fetched from https://sourceforge.net/projects/tensornetwork.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.
