This is the Windows app named ELF (Extensive Lightweight Framework) whose latest release can be downloaded as ELFsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named ELF (Extensive Lightweight Framework) with OnWorks for free.
Ikuti petunjuk ini untuk menjalankan aplikasi ini:
- 1. Download aplikasi ini di PC Anda.
- 2. Masuk ke file manager kami https://www.onworks.net/myfiles.php?username=XXXXX dengan username yang anda inginkan.
- 3. Upload aplikasi ini di filemanager tersebut.
- 4. Mulai emulator online OS OnWorks apa pun dari situs web ini, tetapi emulator online Windows yang lebih baik.
- 5. Dari OS Windows OnWorks yang baru saja Anda mulai, buka file manager kami https://www.onworks.net/myfiles.php?username=XXXXX dengan nama pengguna yang Anda inginkan.
- 6. Unduh aplikasi dan instal.
- 7. Unduh Wine dari repositori perangkat lunak distribusi Linux Anda. Setelah terinstal, Anda kemudian dapat mengklik dua kali aplikasi untuk menjalankannya dengan Wine. Anda juga dapat mencoba PlayOnLinux, antarmuka mewah di atas Wine yang akan membantu Anda menginstal program dan game Windows populer.
Wine adalah cara untuk menjalankan perangkat lunak Windows di Linux, tetapi tidak memerlukan Windows. Wine adalah lapisan kompatibilitas Windows sumber terbuka yang dapat menjalankan program Windows secara langsung di desktop Linux apa pun. Pada dasarnya, Wine mencoba untuk mengimplementasikan kembali Windows dari awal sehingga dapat menjalankan semua aplikasi Windows tersebut tanpa benar-benar membutuhkan Windows.
Tangkapan layar
Ad
ELF (Kerangka Ringan yang Luas)
DESKRIPSI
ELF (Extensive, Lightweight, and Flexible) is a high-performance platform for reinforcement learning research that unifies simulation, data collection, and distributed training. A C++ core provides fast environments and concurrent actors, while Python bindings expose simple APIs for agents, replay, and optimization loops. It supports both single-agent and multi-agent settings, with batched stepping and shared-memory queues that keep GPUs saturated during training. ELF introduced widely used reference systems, most notably ELF OpenGo, demonstrating at-scale self-play with strong analysis tooling and public checkpoints. Its design emphasizes reproducibility: deterministic seeds, logging, and evaluation harnesses make large-scale experiments trackable and comparable. Because the platform is modular—envs, samplers, learners, and collectors—researchers can drop in new environments or algorithms without re-architecting the pipeline.
Fitur
- C++ simulation core with Python bindings for fast RL loops
- Distributed actor–learner architecture with shared-memory queues
- Support for single- and multi-agent environments and batched stepping
- Reproducible training with logging, evaluation, and checkpointing
- Reference implementations including the ELF OpenGo self-play system
- Pluggable envs, replay buffers, and learners for rapid experimentation
Bahasa Pemrograman
C + +
KATEGORI
This is an application that can also be fetched from https://sourceforge.net/projects/elf.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.