This is the Windows app named ML Ferret whose latest release can be downloaded as ml-ferretsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named ML Ferret with OnWorks for free.
Ikuti petunjuk ini untuk menjalankan aplikasi ini:
- 1. Download aplikasi ini di PC Anda.
- 2. Masuk ke file manager kami https://www.onworks.net/myfiles.php?username=XXXXX dengan username yang anda inginkan.
- 3. Upload aplikasi ini di filemanager tersebut.
- 4. Mulai emulator online OS OnWorks apa pun dari situs web ini, tetapi emulator online Windows yang lebih baik.
- 5. Dari OS Windows OnWorks yang baru saja Anda mulai, buka file manager kami https://www.onworks.net/myfiles.php?username=XXXXX dengan nama pengguna yang Anda inginkan.
- 6. Unduh aplikasi dan instal.
- 7. Unduh Wine dari repositori perangkat lunak distribusi Linux Anda. Setelah terinstal, Anda kemudian dapat mengklik dua kali aplikasi untuk menjalankannya dengan Wine. Anda juga dapat mencoba PlayOnLinux, antarmuka mewah di atas Wine yang akan membantu Anda menginstal program dan game Windows populer.
Wine adalah cara untuk menjalankan perangkat lunak Windows di Linux, tetapi tidak memerlukan Windows. Wine adalah lapisan kompatibilitas Windows sumber terbuka yang dapat menjalankan program Windows secara langsung di desktop Linux apa pun. Pada dasarnya, Wine mencoba untuk mengimplementasikan kembali Windows dari awal sehingga dapat menjalankan semua aplikasi Windows tersebut tanpa benar-benar membutuhkan Windows.
Tangkapan layar
Ad
ML Musang
DESKRIPSI
Ferret is Apple’s end-to-end multimodal large language model designed specifically for flexible referring and grounding: it can understand references of any granularity (boxes, points, free-form regions) and then ground open-vocabulary descriptions back onto the image. The core idea is a hybrid region representation that mixes discrete coordinates with continuous visual features, so the model can fluidly handle “any-form” referring while maintaining precise spatial localization. The repo presents the vision-language pipeline, model assets, and paper resources that show how Ferret answers questions, follows instructions, and returns grounded outputs rather than just text. In practice, this enables tasks like “find that small red icon next to the chart and describe it” where both the linguistic reference and the visual region are ambiguous without fine spatial reasoning.
Fitur
- Any-form referring and precise visual grounding
- Hybrid region representation combining coordinates and features
- Open-vocabulary recognition with grounded outputs
- Instruction following for multimodal QA and editing prompts
- Assets and training scripts aligned to the research paper
- Research baseline for fine-grained spatial reasoning in MLLMs
Bahasa Pemrograman
Ular sanca
KATEGORI
This is an application that can also be fetched from https://sourceforge.net/projects/ml-ferret.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.