GoGPT Best VPN GoSearch

Favicon di OnWorks

RLax download for Linux

Free download RLax Linux app to run online in Ubuntu online, Fedora online or Debian online

This is the Linux app named RLax whose latest release can be downloaded as RLax0.1.8sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

Download and run online this app named RLax with OnWorks for free.

Segui queste istruzioni per eseguire questa app:

- 1. Scaricata questa applicazione sul tuo PC.

- 2. Entra nel nostro file manager https://www.onworks.net/myfiles.php?username=XXXXX con il nome utente che desideri.

- 3. Carica questa applicazione in tale file manager.

- 4. Avviare l'emulatore online OnWorks Linux o Windows online o l'emulatore online MACOS da questo sito Web.

- 5. Dal sistema operativo OnWorks Linux che hai appena avviato, vai al nostro file manager https://www.onworks.net/myfiles.php?username=XXXXX con il nome utente che desideri.

- 6. Scarica l'applicazione, installala ed eseguila.

IMMAGINI

Ad


RLax


DESCRIZIONE

RLax (pronounced “relax”) is a JAX-based library developed by Google DeepMind that provides reusable mathematical building blocks for constructing reinforcement learning (RL) agents. Rather than implementing full algorithms, RLax focuses on the core functional operations that underpin RL methods—such as computing value functions, returns, policy gradients, and loss terms—allowing researchers to flexibly assemble their own agents. It supports both on-policy and off-policy learning, as well as value-based, policy-based, and model-based approaches. RLax is fully JIT-compilable with JAX, enabling high-performance execution across CPU, GPU, and TPU backends. The library implements tools for Bellman equations, return distributions, general value functions, and policy optimization in both continuous and discrete action spaces. It integrates seamlessly with DeepMind’s Haiku (for neural network definition) and Optax (for optimization), making it a key component in modular RL pipelines.



Caratteristiche

  • Modular reinforcement learning primitives (values, returns, and policies)
  • JAX-optimized for GPU/TPU acceleration and automatic differentiation
  • Supports on-policy and off-policy learning paradigms
  • Implements distributional value functions and general value functions
  • Integrates with Haiku and Optax for neural network and optimization pipelines
  • Comprehensive testing and examples for reproducibility and educational use


Linguaggio di programmazione

Python, shell Unix


Categorie

Biblioteche

This is an application that can also be fetched from https://sourceforge.net/projects/rlax.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.


Server e workstation gratuiti

Scarica app per Windows e Linux

Comandi Linux

Ad




×
Cookie per pubblicità
❤️Fai acquisti, prenota o acquista qui: nessun costo, aiuta a mantenere i servizi gratuiti.