This is the Windows app named ELF (Extensive Lightweight Framework) whose latest release can be downloaded as ELFsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named ELF (Extensive Lightweight Framework) with OnWorks for free.
Segui queste istruzioni per eseguire questa app:
- 1. Scaricata questa applicazione sul tuo PC.
- 2. Entra nel nostro file manager https://www.onworks.net/myfiles.php?username=XXXXX con il nome utente che desideri.
- 3. Carica questa applicazione in tale file manager.
- 4. Avvia qualsiasi emulatore online OS OnWorks da questo sito Web, ma migliore emulatore online Windows.
- 5. Dal sistema operativo OnWorks Windows che hai appena avviato, vai al nostro file manager https://www.onworks.net/myfiles.php?username=XXXXX con il nome utente che desideri.
- 6. Scarica l'applicazione e installala.
- 7. Scarica Wine dai repository software delle tue distribuzioni Linux. Una volta installato, puoi quindi fare doppio clic sull'app per eseguirli con Wine. Puoi anche provare PlayOnLinux, un'interfaccia fantasiosa su Wine che ti aiuterà a installare programmi e giochi Windows popolari.
Wine è un modo per eseguire il software Windows su Linux, ma senza Windows richiesto. Wine è un livello di compatibilità Windows open source in grado di eseguire programmi Windows direttamente su qualsiasi desktop Linux. Essenzialmente, Wine sta cercando di re-implementare abbastanza Windows da zero in modo che possa eseguire tutte quelle applicazioni Windows senza effettivamente bisogno di Windows.
IMMAGINI
Ad
ELF (Framework leggero esteso)
DESCRIZIONE
ELF (Extensive, Lightweight, and Flexible) is a high-performance platform for reinforcement learning research that unifies simulation, data collection, and distributed training. A C++ core provides fast environments and concurrent actors, while Python bindings expose simple APIs for agents, replay, and optimization loops. It supports both single-agent and multi-agent settings, with batched stepping and shared-memory queues that keep GPUs saturated during training. ELF introduced widely used reference systems, most notably ELF OpenGo, demonstrating at-scale self-play with strong analysis tooling and public checkpoints. Its design emphasizes reproducibility: deterministic seeds, logging, and evaluation harnesses make large-scale experiments trackable and comparable. Because the platform is modular—envs, samplers, learners, and collectors—researchers can drop in new environments or algorithms without re-architecting the pipeline.
Caratteristiche
- C++ simulation core with Python bindings for fast RL loops
- Distributed actor–learner architecture with shared-memory queues
- Support for single- and multi-agent environments and batched stepping
- Reproducible training with logging, evaluation, and checkpointing
- Reference implementations including the ELF OpenGo self-play system
- Pluggable envs, replay buffers, and learners for rapid experimentation
Linguaggio di programmazione
C++
Categorie
This is an application that can also be fetched from https://sourceforge.net/projects/elf.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.