This is the Linux app named Gemma in PyTorch whose latest release can be downloaded as gemma_pytorchsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Gemma in PyTorch with OnWorks for free.
בצע את ההוראות הבאות כדי להפעיל את האפליקציה הזו:
- 1. הורד את היישום הזה למחשב שלך.
- 2. הזן במנהל הקבצים שלנו https://www.onworks.net/myfiles.php?username=XXXXX עם שם המשתמש שאתה רוצה.
- 3. העלה את היישום הזה במנהל קבצים כזה.
- 4. הפעל את האמולטור המקוון של OnWorks Linux או Windows מקוון או אמולטור מקוון של MACOS מאתר זה.
- 5. ממערכת ההפעלה OnWorks Linux שזה עתה התחלת, עבור אל מנהל הקבצים שלנו https://www.onworks.net/myfiles.php?username=XXXXX עם שם המשתמש הרצוי.
- 6. הורד את האפליקציה, התקן אותה והפעל אותה.
בצילומי מסך
Ad
ג'מה ב-PyTorch
תיאור
gemma_pytorch provides the official PyTorch reference for running and fine-tuning Google’s Gemma family of open models. It includes model definitions, configuration files, and loading utilities for multiple parameter scales, enabling quick evaluation and downstream adaptation. The repository demonstrates text generation pipelines, tokenizer setup, quantization paths, and adapters for low-rank or parameter-efficient fine-tuning. Example notebooks walk through instruction tuning and evaluation so teams can benchmark and iterate rapidly. The code is organized to be legible and hackable, exposing attention blocks, positional encodings, and head configurations. With standard PyTorch abstractions, it integrates easily into existing training loops, loggers, and evaluation harnesses.
תכונות
- PyTorch implementations and configs for Gemma model variants
- Ready-to-use generation, tokenization, and checkpoint loading
- Drop-in modules compatible with common PyTorch stacks
- Example notebooks for tuning and evaluation
- Quantization and inference optimization paths
- Parameter-efficient fine-tuning adapters and examples
שפת תכנות
פיתון
כל הקטגוריות
This is an application that can also be fetched from https://sourceforge.net/projects/gemma-in-pytorch.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.