GoGPT Best VPN GoSearch

סמל OnWorks

MoCo v3 download for Linux

Free download MoCo v3 Linux app to run online in Ubuntu online, Fedora online or Debian online

This is the Linux app named MoCo v3 whose latest release can be downloaded as moco-v3sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

Download and run online this app named MoCo v3 with OnWorks for free.

בצע את ההוראות הבאות כדי להפעיל את האפליקציה הזו:

- 1. הורד את היישום הזה למחשב שלך.

- 2. הזן במנהל הקבצים שלנו https://www.onworks.net/myfiles.php?username=XXXXX עם שם המשתמש שאתה רוצה.

- 3. העלה את היישום הזה במנהל קבצים כזה.

- 4. הפעל את האמולטור המקוון של OnWorks Linux או Windows מקוון או אמולטור מקוון של MACOS מאתר זה.

- 5. ממערכת ההפעלה OnWorks Linux שזה עתה התחלת, עבור אל מנהל הקבצים שלנו https://www.onworks.net/myfiles.php?username=XXXXX עם שם המשתמש הרצוי.

- 6. הורד את האפליקציה, התקן אותה והפעל אותה.

בצילומי מסך

Ad


MoCo v3


תיאור

MoCo v3 is a PyTorch reimplementation of Momentum Contrast v3 (MoCo v3), Facebook Research’s state-of-the-art self-supervised learning framework for visual representation learning using ResNet and Vision Transformer (ViT) backbones. Originally developed in TensorFlow for TPUs, this version faithfully reproduces the paper’s results on GPUs while offering an accessible and scalable PyTorch interface. MoCo v3 introduces improvements for training self-supervised ViTs by combining contrastive learning with transformer-based architectures, achieving strong linear and end-to-end fine-tuning performance on ImageNet benchmarks. The repository supports multi-node distributed training, automatic mixed precision, and linear scaling of learning rates for large-batch regimes. It also includes scripts for self-supervised pretraining, linear classification, and fine-tuning within the DeiT framework.



תכונות

  • Compatible with ImageNet and standard vision benchmarks for transfer learning
  • Configurable via command-line flags with scalable hyperparameters and batch settings
  • Integrated scripts for self-supervised pretraining, linear evaluation, and DeiT fine-tuning
  • Achieves strong ImageNet results (e.g., 74.6% linear top-1 on ResNet-50, 83.2% fine-tuned ViT-B)
  • Supports large-scale multi-GPU distributed training with mixed precision
  • PyTorch implementation of self-supervised MoCo v3 for ResNet and ViT models


שפת תכנות

פיתון


כל הקטגוריות

מסגרות למידה עמוקה

This is an application that can also be fetched from https://sourceforge.net/projects/moco-v3.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.


שרתים ותחנות עבודה בחינם

הורד אפליקציות Windows & Linux

פקודות לינוקס

Ad




×
פרסומת
❤️קנו, הזמינו או קנו כאן - ללא עלות, עוזר לשמור על שירותים בחינם.