This is the Windows app named ResNeXt whose latest release can be downloaded as ResNeXtsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named ResNeXt with OnWorks for free.
בצע את ההוראות הבאות כדי להפעיל את האפליקציה הזו:
- 1. הורד את היישום הזה למחשב שלך.
- 2. הזן במנהל הקבצים שלנו https://www.onworks.net/myfiles.php?username=XXXXX עם שם המשתמש שאתה רוצה.
- 3. העלה את היישום הזה במנהל קבצים כזה.
- 4. הפעל כל אמולטור מקוון של OS OnWorks מאתר זה, אך עדיף אמולטור מקוון של Windows.
- 5. ממערכת ההפעלה OnWorks Windows שזה עתה התחלת, עבור אל מנהל הקבצים שלנו https://www.onworks.net/myfiles.php?username=XXXXX עם שם המשתמש הרצוי.
- 6. הורד את האפליקציה והתקן אותה.
- 7. הורד את Wine ממאגרי התוכנה שלך להפצות לינוקס. לאחר ההתקנה, תוכל ללחוץ פעמיים על האפליקציה כדי להפעיל אותם עם Wine. אתה יכול גם לנסות את PlayOnLinux, ממשק מפואר מעל Wine שיעזור לך להתקין תוכניות ומשחקים פופולריים של Windows.
Wine היא דרך להפעיל תוכנת Windows על לינוקס, אך ללא צורך ב-Windows. Wine היא שכבת תאימות של Windows בקוד פתוח שיכולה להריץ תוכניות Windows ישירות על כל שולחן עבודה של לינוקס. בעיקרו של דבר, Wine מנסה להטמיע מחדש מספיק של Windows מאפס כדי שהוא יוכל להריץ את כל יישומי Windows מבלי להזדקק ל-Windows.
בצילומי מסך
Ad
רסנקסט
תיאור
ResNeXt is a deep neural network architecture for image classification built on the idea of aggregated residual transformations. Instead of simply increasing depth or width, ResNeXt introduces a new dimension called cardinality, which refers to the number of parallel transformation paths (i.e. the number of “branches”) that are aggregated together. Each branch is a small transformation (e.g. bottleneck block) and their outputs are summed—this enables richer representation without excessive parameter blowup. The design is modular and homogeneous, making it relatively easy to scale (by tuning cardinality, width, depth) and adopt in existing residual frameworks. The official repository offers a Torch (Lua) implementation with code for training, evaluation, and pretrained models on ImageNet. In practice, ResNeXt models often outperform standard ResNet models of comparable complexity.
תכונות
- Aggregated residual transformations combining multiple parallel branches
- Introduces “cardinality” as a new architectural dimension
- Modular bottleneck blocks with easy scaling across width/depth/cardinality
- Torch implementation with training and evaluation scripts
- Pretrained models for ImageNet classification
- Compatibility with residual architectures and straightforward integration
שפת תכנות
לואה
כל הקטגוריות
This is an application that can also be fetched from https://sourceforge.net/projects/resnext.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.