This is the Linux app named Perception Models whose latest release can be downloaded as perception_modelssourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Perception Models with OnWorks for free.
このアプリを実行するには、次の手順に従ってください。
-1。このアプリケーションをPCにダウンロードしました。
--2。ファイルマネージャーhttps://www.onworks.net/myfiles.php?username=XXXXXに必要なユーザー名を入力します。
-3。このアプリケーションをそのようなファイルマネージャにアップロードします。
-4。このWebサイトからOnWorksLinuxオンラインまたはWindowsオンラインエミュレーターまたはMACOSオンラインエミュレーターを起動します。
-5。起動したばかりのOnWorksLinux OSから、必要なユーザー名でファイルマネージャーhttps://www.onworks.net/myfiles.php?username=XXXXXにアクセスします。
-6。アプリケーションをダウンロードし、インストールして実行します。
スクリーンショットは
Ad
知覚モデル
DESCRIPTION
Perception Models is a state-of-the-art framework developed by Facebook Research for advanced image and video perception tasks. It introduces two primary components: the Perception Encoder (PE) for visual feature extraction and the Perception Language Model (PLM) for multimodal decoding and reasoning. The PE module is a family of vision encoders designed to excel in image and video understanding, surpassing models like SigLIP2, InternVideo2, and DINOv2 across multiple benchmarks. Meanwhile, PLM integrates with PE to power vision-language modeling, achieving results competitive with leading multimodal systems such as QwenVL2.5 and InternVL3, all while being fully reproducible with open data. The project supports a wide range of research applications, from visual recognition and dense prediction to fine-grained multimodal understanding. Additionally, it includes several large-scale open datasets for both image and video perception.
オプション
- Combines Perception Encoder (PE) for vision encoding and Perception Language Model (PLM) for multimodal decoding
- State-of-the-art performance in image, video, and vision-language benchmarks
- Open, reproducible models using freely available datasets for transparency
- Multiple PE variants specialized for core, language-aligned, and spatial tasks
- PLM available in 1B, 3B, and 8B parameter sizes for flexible research needs
- Integrated with popular tools such as Hugging Face Transformers, timm, and lmms-eval
プログラミング言語
Python
カテゴリー
This is an application that can also be fetched from https://sourceforge.net/projects/perception-models.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.