This is the Windows app named Point-E whose latest release can be downloaded as point-esourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Point-E with OnWorks for free.
このアプリを実行するには、次の手順に従ってください。
-1。このアプリケーションをPCにダウンロードしました。
--2。ファイルマネージャーhttps://www.onworks.net/myfiles.php?username=XXXXXに必要なユーザー名を入力します。
-3。このアプリケーションをそのようなファイルマネージャにアップロードします。
-4。このWebサイトからOSOnWorksオンラインエミュレーターを起動しますが、Windowsオンラインエミュレーターの方が優れています。
-5。起動したばかりのOnWorksWindows OSから、必要なユーザー名でファイルマネージャーhttps://www.onworks.net/myfiles.php?username=XXXXXにアクセスします。
-6。アプリケーションをダウンロードしてインストールします。
-7.LinuxディストリビューションソフトウェアリポジトリからWineをダウンロードします。 インストールしたら、アプリをダブルクリックして、Wineで実行できます。 また、人気のあるWindowsプログラムやゲームのインストールに役立つWine上の豪華なインターフェイスであるPlayOnLinuxを試すこともできます。
WineはLinux上でWindowsソフトウェアを実行する方法ですが、Windowsは必要ありません。 Wineは、任意のLinuxデスクトップでWindowsプログラムを直接実行できるオープンソースのWindows互換性レイヤーです。 基本的に、Wineは、実際にWindowsを必要とせずに、これらすべてのWindowsアプリケーションを実行できるように、十分な数のWindowsを最初から再実装しようとしています。
スクリーンショットは
Ad
点
DESCRIPTION
point-e is the official repository for Point-E, a generative model developed by OpenAI that produces 3D point clouds from textual (or image) prompts. Its principal advantage is speed: it can generate 3D assets in just 1–2 minutes on a single GPU, which is significantly faster than many competing text-to-3D models. The model works via a two-stage diffusion approach: first, it uses a text → image diffusion network to produce a synthetic 2D view consistent with the prompt; then a second diffusion model converts that image into a 3D point cloud. While it does not match the fine detail of some slower methods, the tradeoff in speed makes it practical for prototyping and interactive 3D generation. The repository includes inference scripts, utilities for converting point clouds to meshes (e.g. via signed distance function regression), sample notebooks, and weight checkpoints. It also provides documentation on limitations, usage instructions, and example outputs.
オプション
- Text / image → 3D point cloud generation via diffusion
- Two-stage architecture: text → image, then image → point cloud
- Utilities to convert point clouds to mesh via implicit function regression
- Example notebooks and scripts for inference and visualization
- Pretrained checkpoints for rapid prototyping
- Documentation of limitations and tradeoffs (e.g. resolution vs speed)
プログラミング言語
Python
カテゴリー
This is an application that can also be fetched from https://sourceforge.net/projects/point-e.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.