This is the Linux app named Apache Spark whose latest release can be downloaded as sparkv4.1.0-preview3-rc1sourcecode.zip. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Apache Spark with OnWorks for free.
ປະຕິບັດຕາມຄໍາແນະນໍາເຫຼົ່ານີ້ເພື່ອດໍາເນີນການ app ນີ້:
- 1. ດາວໂຫຼດຄໍາຮ້ອງສະຫມັກນີ້ໃນ PC ຂອງທ່ານ.
- 2. ໃສ່ໃນຕົວຈັດການໄຟລ໌ຂອງພວກເຮົາ https://www.onworks.net/myfiles.php?username=XXXXX ດ້ວຍຊື່ຜູ້ໃຊ້ທີ່ທ່ານຕ້ອງການ.
- 3. ອັບໂຫລດແອັບພລິເຄຊັນນີ້ຢູ່ໃນຕົວຈັດການໄຟລ໌ດັ່ງກ່າວ.
- 4. ເລີ່ມ OnWorks Linux ອອນລາຍ ຫຼື Windows online emulator ຫຼື MACOS online emulator ຈາກເວັບໄຊທ໌ນີ້.
- 5. ຈາກ OnWorks Linux OS ທີ່ເຈົ້າຫາກໍ່ເລີ່ມຕົ້ນ, ໄປທີ່ຕົວຈັດການໄຟລ໌ຂອງພວກເຮົາ https://www.onworks.net/myfiles.php?username=XXXXX ດ້ວຍຊື່ຜູ້ໃຊ້ທີ່ທ່ານຕ້ອງການ.
- 6. ດາວນ໌ໂຫລດຄໍາຮ້ອງສະຫມັກ, ຕິດຕັ້ງມັນແລະດໍາເນີນການ.
ໜ້າ ຈໍ
Ad
Apache Spark
ລາຍລະອຽດ
Apache Spark is a unified engine for large-scale data processing, offering APIs for batch jobs, streaming, machine learning, and graph computation. It builds on resilient distributed datasets (RDDs) and the newer DataFrame/Dataset abstractions to provide fault-tolerant, in-memory computation across clusters. Spark’s execution engine handles scheduling, shuffles, caching, and data locality so users can focus on transformations rather than infrastructure plumbing. With Spark Streaming (microbatches) and Structured Streaming, it delivers low-latency event processing suitable for real-time analytics. The built-in MLlib library provides scalable machine learning algorithms, while GraphX enables graph computations integrated with data pipelines. Spark supports multiple languages—Scala, Java, Python, R—and connects with many storage systems like HDFS, S3, Cassandra, and streaming platforms like Kafka, making it a versatile choice for big data workloads in analytics, ETL, and data science.
ຄຸນລັກສະນະ
- Batch and real-time / streaming data processing via Structured Streaming and other APIs
- DataFrame and SQL APIs to allow SQL-style querying and transformation of structured and semi-structured data
- Machine learning library (MLlib) with algorithms for classification, regression, clustering, etc.
- Graph processing capabilities via GraphX, for analyzing graph structures etc.
- Support for multiple languages: Scala, Java, Python, R (and experimental support for others)
- Ability to run on clusters via various cluster managers (Standalone, YARN, Mesos, Kubernetes), integrating with many data storage systems (HDFS, S3, etc.)
ພາສາການຂຽນໂປຣແກຣມ
Scala
ປະເພດ
This is an application that can also be fetched from https://sourceforge.net/projects/apache-spark.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.
