This is the Linux app named MAE (Masked Autoencoders) whose latest release can be downloaded as maesourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named MAE (Masked Autoencoders) with OnWorks for free.
ປະຕິບັດຕາມຄໍາແນະນໍາເຫຼົ່ານີ້ເພື່ອດໍາເນີນການ app ນີ້:
- 1. ດາວໂຫຼດຄໍາຮ້ອງສະຫມັກນີ້ໃນ PC ຂອງທ່ານ.
- 2. ໃສ່ໃນຕົວຈັດການໄຟລ໌ຂອງພວກເຮົາ https://www.onworks.net/myfiles.php?username=XXXXX ດ້ວຍຊື່ຜູ້ໃຊ້ທີ່ທ່ານຕ້ອງການ.
- 3. ອັບໂຫລດແອັບພລິເຄຊັນນີ້ຢູ່ໃນຕົວຈັດການໄຟລ໌ດັ່ງກ່າວ.
- 4. ເລີ່ມ OnWorks Linux ອອນລາຍ ຫຼື Windows online emulator ຫຼື MACOS online emulator ຈາກເວັບໄຊທ໌ນີ້.
- 5. ຈາກ OnWorks Linux OS ທີ່ເຈົ້າຫາກໍ່ເລີ່ມຕົ້ນ, ໄປທີ່ຕົວຈັດການໄຟລ໌ຂອງພວກເຮົາ https://www.onworks.net/myfiles.php?username=XXXXX ດ້ວຍຊື່ຜູ້ໃຊ້ທີ່ທ່ານຕ້ອງການ.
- 6. ດາວນ໌ໂຫລດຄໍາຮ້ອງສະຫມັກ, ຕິດຕັ້ງມັນແລະດໍາເນີນການ.
ໜ້າ ຈໍ
Ad
MAE (ຕົວເຂົ້າລະຫັດອັດຕະໂນມັດແບບໜ້າກາກ)
ລາຍລະອຽດ
MAE (Masked Autoencoders) is a self-supervised learning framework for visual representation learning using masked image modeling. It trains a Vision Transformer (ViT) by randomly masking a high percentage of image patches (typically 75%) and reconstructing the missing content from the remaining visible patches. This forces the model to learn semantic structure and global context without supervision. The encoder processes only the visible patches, while a lightweight decoder reconstructs the full image—making pretraining computationally efficient. After pretraining, the encoder serves as a powerful backbone for downstream tasks like image classification, segmentation, and detection, achieving top performance with minimal fine-tuning. The repository provides pretrained models, fine-tuning scripts, evaluation protocols, and visualization tools for reconstruction quality and learned features.
ຄຸນລັກສະນະ
- Masked image modeling with random high-ratio patch masking
- Efficient pretraining via encoder-decoder separation (encoder sees only visible patches)
- Scalable Vision Transformer backbone for downstream vision tasks
- Pretrained models and fine-tuning scripts for classification, detection, and segmentation
- Visualization tools for reconstruction and representation analysis
- Self-supervised training paradigm requiring no labeled data
ພາສາການຂຽນໂປຣແກຣມ
Python
ປະເພດ
This is an application that can also be fetched from https://sourceforge.net/projects/mae-masked-autoencoders.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.