GoGPT Best VPN GoSearch

OnWorks ഫെവിക്കോൺ

Summarize from Feedback download for Windows

Free download Summarize from Feedback Windows app to run online win Wine in Ubuntu online, Fedora online or Debian online

This is the Windows app named Summarize from Feedback whose latest release can be downloaded as summarize-from-feedbacksourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

Download and run online this app named Summarize from Feedback with OnWorks for free.

ഈ ആപ്പ് പ്രവർത്തിപ്പിക്കുന്നതിന് ഈ നിർദ്ദേശങ്ങൾ പാലിക്കുക:

- 1. നിങ്ങളുടെ പിസിയിൽ ഈ ആപ്ലിക്കേഷൻ ഡൗൺലോഡ് ചെയ്തു.

- 2. ഞങ്ങളുടെ ഫയൽ മാനേജറിൽ https://www.onworks.net/myfiles.php?username=XXXXX എന്നതിൽ നിങ്ങൾക്ക് ആവശ്യമുള്ള ഉപയോക്തൃനാമം നൽകുക.

- 3. അത്തരം ഫയൽമാനേജറിൽ ഈ ആപ്ലിക്കേഷൻ അപ്‌ലോഡ് ചെയ്യുക.

- 4. ഈ വെബ്‌സൈറ്റിൽ നിന്ന് ഏതെങ്കിലും OS OnWorks ഓൺലൈൻ എമുലേറ്റർ ആരംഭിക്കുക, എന്നാൽ മികച്ച Windows ഓൺലൈൻ എമുലേറ്റർ.

- 5. നിങ്ങൾ ഇപ്പോൾ ആരംഭിച്ച OnWorks Windows OS-ൽ നിന്ന്, നിങ്ങൾക്ക് ആവശ്യമുള്ള ഉപയോക്തൃനാമത്തോടുകൂടിയ ഞങ്ങളുടെ ഫയൽ മാനേജർ https://www.onworks.net/myfiles.php?username=XXXXX എന്നതിലേക്ക് പോകുക.

- 6. ആപ്ലിക്കേഷൻ ഡൗൺലോഡ് ചെയ്ത് ഇൻസ്റ്റാൾ ചെയ്യുക.

- 7. നിങ്ങളുടെ Linux വിതരണ സോഫ്റ്റ്‌വെയർ ശേഖരണങ്ങളിൽ നിന്ന് വൈൻ ഡൗൺലോഡ് ചെയ്യുക. ഇൻസ്‌റ്റാൾ ചെയ്‌തുകഴിഞ്ഞാൽ, വൈൻ ഉപയോഗിച്ച് അവ പ്രവർത്തിപ്പിക്കുന്നതിന് നിങ്ങൾക്ക് ആപ്പിൽ ഡബിൾ ക്ലിക്ക് ചെയ്യാം. ജനപ്രിയ വിൻഡോസ് പ്രോഗ്രാമുകളും ഗെയിമുകളും ഇൻസ്റ്റാൾ ചെയ്യാൻ സഹായിക്കുന്ന വൈനിലൂടെയുള്ള ഫാൻസി ഇന്റർഫേസായ PlayOnLinux നിങ്ങൾക്ക് പരീക്ഷിക്കാവുന്നതാണ്.

ലിനക്സിൽ വിൻഡോസ് സോഫ്റ്റ്‌വെയർ പ്രവർത്തിപ്പിക്കാനുള്ള ഒരു മാർഗമാണ് വൈൻ, എന്നാൽ വിൻഡോസ് ആവശ്യമില്ല. ഏത് ലിനക്സ് ഡെസ്ക്ടോപ്പിലും നേരിട്ട് വിൻഡോസ് പ്രോഗ്രാമുകൾ പ്രവർത്തിപ്പിക്കാൻ കഴിയുന്ന ഒരു ഓപ്പൺ സോഴ്സ് വിൻഡോസ് കോംപാറ്റിബിലിറ്റി ലെയറാണ് വൈൻ. അടിസ്ഥാനപരമായി, വൈൻ ആദ്യം മുതൽ ആവശ്യത്തിന് വിൻഡോസ് വീണ്ടും നടപ്പിലാക്കാൻ ശ്രമിക്കുന്നു, അതുവഴി യഥാർത്ഥത്തിൽ വിൻഡോസ് ആവശ്യമില്ലാതെ തന്നെ എല്ലാ വിൻഡോസ് ആപ്ലിക്കേഷനുകളും പ്രവർത്തിപ്പിക്കാൻ കഴിയും.

സ്ക്രീൻഷോട്ടുകൾ

Ad


ഫീഡ്‌ബാക്കിൽ നിന്ന് സംഗ്രഹിക്കുക


വിവരണം

The summarize-from-feedback repository implements the methods from the paper “Learning to Summarize from Human Feedback”. Its purpose is to train a summarization model that better aligns with human preferences by first collecting human feedback (comparisons between summaries) to train a reward model, and then fine-tuning a policy (summarizer) to maximize that learned reward. The code includes different stages: a supervised baseline (i.e. standard summarization training), the reward modeling component, and the reinforcement learning (or preference-based fine-tuning) phase. The repo also includes utilities for dataset handling, modeling architectures, inference, and evaluation. Because the codebase is experimental, parts of it may not run out-of-box depending on dependencies or environment, but it remains a canonical reference for how to implement summarization via human feedback.



സവിശേഷതകൾ

  • Supervised baseline summarization model to initialize performance
  • Reward model trained from human comparisons of summary pairs
  • Preference-based fine-tuning / RL stage to optimize summarizer toward human judgments
  • Dataset handling modules (loading, comparisons, splits)
  • Inference and evaluation scripts to generate and score summaries
  • Architecture layout files (e.g. model_layout.py) supporting modular model definitions


പ്രോഗ്രാമിംഗ് ഭാഷ

പൈത്തൺ


Categories

പഠനം

This is an application that can also be fetched from https://sourceforge.net/projects/summarize-from-feedback.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.


സൗജന്യ സെർവറുകളും വർക്ക്സ്റ്റേഷനുകളും

Windows & Linux ആപ്പുകൾ ഡൗൺലോഡ് ചെയ്യുക

ലിനക്സ് കമാൻഡുകൾ

Ad




×
വിജ്ഞാപനം
❤️ഇവിടെ ഷോപ്പുചെയ്യുക, ബുക്ക് ചെയ്യുക അല്ലെങ്കിൽ വാങ്ങുക — ചെലവില്ലാതെ, സേവനങ്ങൾ സൗജന്യമായി നിലനിർത്താൻ സഹായിക്കുന്നു.