This is the Windows app named Detect and Track whose latest release can be downloaded as Detect-Tracksourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Detect and Track with OnWorks for free.
Ikut arahan ini untuk menjalankan apl ini:
- 1. Memuat turun aplikasi ini dalam PC anda.
- 2. Masukkan dalam pengurus fail kami https://www.onworks.net/myfiles.php?username=XXXXX dengan nama pengguna yang anda mahukan.
- 3. Muat naik aplikasi ini dalam pengurus filem tersebut.
- 4. Mulakan mana-mana emulator dalam talian OS OnWorks daripada tapak web ini, tetapi emulator dalam talian Windows yang lebih baik.
- 5. Daripada OS Windows OnWorks yang baru anda mulakan, pergi ke pengurus fail kami https://www.onworks.net/myfiles.php?username=XXXX dengan nama pengguna yang anda mahukan.
- 6. Muat turun aplikasi dan pasangnya.
- 7. Muat turun Wine dari repositori perisian pengedaran Linux anda. Setelah dipasang, anda kemudian boleh mengklik dua kali aplikasi untuk menjalankannya dengan Wine. Anda juga boleh mencuba PlayOnLinux, antara muka mewah melalui Wine yang akan membantu anda memasang program dan permainan Windows yang popular.
Wain ialah cara untuk menjalankan perisian Windows pada Linux, tetapi tanpa Windows diperlukan. Wain ialah lapisan keserasian Windows sumber terbuka yang boleh menjalankan program Windows secara langsung pada mana-mana desktop Linux. Pada asasnya, Wine cuba untuk melaksanakan semula Windows yang mencukupi dari awal supaya ia boleh menjalankan semua aplikasi Windows tersebut tanpa memerlukan Windows.
SKRIN
Ad
Kesan dan Jejak
DESCRIPTION
Detect-Track is the official implementation of the ICCV 2017 paper Detect to Track and Track to Detect by Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. The framework unifies object detection and tracking into a single pipeline, allowing detection to support tracking and tracking to enhance detection performance. Built upon a modified version of R-FCN, the code provides implementations using backbone networks such as ResNet-50, ResNet-101, ResNeXt-101, and Inception-v4, with results demonstrating state-of-the-art accuracy on the ImageNet VID dataset. The repository includes MATLAB-based training and testing scripts, along with pre-trained models and pre-computed region proposals for reproducibility. Multiple testing configurations are available, including multi-frame input and enhanced versions that refine tracking boxes and integrate detection confidence across frames.
Ciri-ciri
- Implements Detect-to-Track and Track-to-Detect framework (ICCV 2017)
- Built on a modified R-FCN with ResNet, ResNeXt, and Inception backbones
- Provides pre-trained models and pre-computed region proposals
- Training and testing scripts for ImageNet VID and DET datasets
- Multiple testing modes including multi-frame and refined tracking
- Results achieve over 82% mAP on ImageNet VID validation set
Bahasa Pengaturcaraan
C++, MATLAB
Kategori
This is an application that can also be fetched from https://sourceforge.net/projects/detect-and-track.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.