This is the Windows app named VideoPose3D whose latest release can be downloaded as VideoPose3Dsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named VideoPose3D with OnWorks for free.
Ikut arahan ini untuk menjalankan apl ini:
- 1. Memuat turun aplikasi ini dalam PC anda.
- 2. Masukkan dalam pengurus fail kami https://www.onworks.net/myfiles.php?username=XXXXX dengan nama pengguna yang anda mahukan.
- 3. Muat naik aplikasi ini dalam pengurus filem tersebut.
- 4. Mulakan mana-mana emulator dalam talian OS OnWorks daripada tapak web ini, tetapi emulator dalam talian Windows yang lebih baik.
- 5. Daripada OS Windows OnWorks yang baru anda mulakan, pergi ke pengurus fail kami https://www.onworks.net/myfiles.php?username=XXXX dengan nama pengguna yang anda mahukan.
- 6. Muat turun aplikasi dan pasangnya.
- 7. Muat turun Wine dari repositori perisian pengedaran Linux anda. Setelah dipasang, anda kemudian boleh mengklik dua kali aplikasi untuk menjalankannya dengan Wine. Anda juga boleh mencuba PlayOnLinux, antara muka mewah melalui Wine yang akan membantu anda memasang program dan permainan Windows yang popular.
Wain ialah cara untuk menjalankan perisian Windows pada Linux, tetapi tanpa Windows diperlukan. Wain ialah lapisan keserasian Windows sumber terbuka yang boleh menjalankan program Windows secara langsung pada mana-mana desktop Linux. Pada asasnya, Wine cuba untuk melaksanakan semula Windows yang mencukupi dari awal supaya ia boleh menjalankan semua aplikasi Windows tersebut tanpa memerlukan Windows.
SKRIN
Ad
VideoPose3D
DESCRIPTION
VideoPose3D is a deep learning framework that reconstructs 3D human poses from 2D keypoint sequences extracted from videos. It builds on top of convolutional and temporal networks that map 2D joint coordinates over time to consistent 3D skeletons, enabling robust motion capture without specialized sensors. The model is trained on large motion capture datasets and can generalize well to unseen environments by leveraging temporal context for smoothing and error correction. By using only 2D detections (such as those from OpenPose or Detectron), it enables markerless 3D pose estimation with relatively lightweight computational requirements. The framework includes pretrained models, data preprocessing utilities, visualization tools, and evaluation scripts for standard benchmarks like Human3.6M. VideoPose3D has been used widely in computer vision research for human motion understanding, activity recognition, and animation generation.
Ciri-ciri
- End-to-end 3D human pose reconstruction from 2D keypoints
- Temporal convolutional architecture for smooth and consistent trajectories
- Compatible with OpenPose and other 2D keypoint detectors
- Pretrained models and evaluation scripts on standard datasets
- Visualization and data augmentation utilities
- Lightweight implementation optimized for real-time inference
Bahasa Pengaturcaraan
Python
Kategori
This is an application that can also be fetched from https://sourceforge.net/projects/videopose3d.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.
