This is the Linux app named AWS SDK for pandas whose latest release can be downloaded as awswrangler-layer-3.13.0-py3.13-arm64.zip. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named AWS SDK for pandas with OnWorks for free.
Volg deze instructies om deze app uit te voeren:
- 1. Download deze applicatie op uw pc.
- 2. Voer in onze bestandsbeheerder https://www.onworks.net/myfiles.php?username=XXXXX in met de gebruikersnaam die u wilt.
- 3. Upload deze applicatie in zo'n bestandsbeheerder.
- 4. Start de OnWorks Linux online of Windows online emulator of MACOS online emulator vanaf deze website.
- 5. Ga vanuit het OnWorks Linux-besturingssysteem dat u zojuist hebt gestart naar onze bestandsbeheerder https://www.onworks.net/myfiles.php?username=XXXXX met de gewenste gebruikersnaam.
- 6. Download de applicatie, installeer hem en voer hem uit.
SCREENSHOTS
Ad
AWS SDK voor panda's
PRODUCTBESCHRIJVING
aws-sdk-pandas (formerly AWS Data Wrangler) bridges pandas with the AWS analytics stack so DataFrames flow seamlessly to and from cloud services. With a few lines of code, you can read from and write to Amazon S3 in Parquet/CSV/JSON/ORC, register tables in the AWS Glue Data Catalog, and query with Amazon Athena directly into pandas. The library abstracts efficient patterns like partitioning, compression, and vectorized I/O so you get performant data lake operations without hand-rolling boilerplate. It also supports Redshift, OpenSearch, and other services, enabling ETL tasks that blend SQL engines and Python transformations. Operational helpers handle IAM, sessions, and concurrency while exposing knobs for encryption, versioning, and catalog consistency. The result is a productive workflow that keeps your analytics in Python while leveraging AWS-native storage and query engines at scale.
Kenmerken
- High-level read/write of DataFrames to S3 with Parquet, CSV, JSON, and ORC
- Tight integration with AWS Glue Catalog and Athena for schema and SQL queries
- Convenience methods for Redshift COPY/UNLOAD and data migration patterns
- Automatic handling of partitions, compression, and columnar formats
- Session and IAM helpers with options for encryption and versioning
- Scalable I/O paths optimized for large data lake workloads
Programmeertaal
Python
Categorieën
This is an application that can also be fetched from https://sourceforge.net/projects/aws-sdk-for-pandas.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.
