GoGPT Best VPN GoSearch

OnWorks-favicon

Guided Diffusion download for Linux

Free download Guided Diffusion Linux app to run online in Ubuntu online, Fedora online or Debian online

This is the Linux app named Guided Diffusion whose latest release can be downloaded as guided-diffusionsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

Download and run online this app named Guided Diffusion with OnWorks for free.

Volg deze instructies om deze app uit te voeren:

- 1. Download deze applicatie op uw pc.

- 2. Voer in onze bestandsbeheerder https://www.onworks.net/myfiles.php?username=XXXXX in met de gebruikersnaam die u wilt.

- 3. Upload deze applicatie in zo'n bestandsbeheerder.

- 4. Start de OnWorks Linux online of Windows online emulator of MACOS online emulator vanaf deze website.

- 5. Ga vanuit het OnWorks Linux-besturingssysteem dat u zojuist hebt gestart naar onze bestandsbeheerder https://www.onworks.net/myfiles.php?username=XXXXX met de gewenste gebruikersnaam.

- 6. Download de applicatie, installeer hem en voer hem uit.

SCREENSHOTS

Ad


Geleide diffusie


PRODUCTBESCHRIJVING

The guided-diffusion repository is centered on diffusion models for image synthesis, with a focus on classifier guidance and improvements over earlier diffusion frameworks. It is derived from OpenAI’s improved-diffusion work, enhanced to include guided generation where a classifier (or other guidance mechanism) can steer sampling toward desired classes or attributes. The code provides model definitions (UNet, diffusion schedules), sampling and training scripts, and utilities for guidance and evaluation. A key insight is that combining diffusion sampling with classifier gradients allows fine control over the generated images, trading off diversity vs fidelity. The repository includes scripts such as image_train.py, image_sample.py, and classifier_train.py to train diffusion models, generate samples, and train guiding classifiers. It also ships with precomputed evaluation batches and baseline comparisons to support reproducible benchmarking of new models.



Kenmerken

  • Diffusion model architecture (UNet, noise schedules, training utilities)
  • Classifier-guided sampling: combining diffusion with classifier gradients
  • Scripts for training models (image_train.py), sampling (image_sample.py), and classifier training
  • Precomputed evaluation batches and baseline metrics for reproducibility
  • Modular code enabling new guidance modalities or architectural tweaks
  • Branching from improved-diffusion with enhancements in guided generation


Programmeertaal

Python


Categorieën

Artificial Intelligence

This is an application that can also be fetched from https://sourceforge.net/projects/guided-diffusion.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.


Gratis servers en werkstations

Windows- en Linux-apps downloaden

Linux-commando's

Ad




×
advertentie
❤️Koop, boek of koop hier — het is gratis, en zo blijven onze diensten gratis.