This is the Linux app named maskrcnn-benchmark whose latest release can be downloaded as Initialreleasesourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named maskrcnn-benchmark with OnWorks for free.
Volg deze instructies om deze app uit te voeren:
- 1. Download deze applicatie op uw pc.
- 2. Voer in onze bestandsbeheerder https://www.onworks.net/myfiles.php?username=XXXXX in met de gebruikersnaam die u wilt.
- 3. Upload deze applicatie in zo'n bestandsbeheerder.
- 4. Start de OnWorks Linux online of Windows online emulator of MACOS online emulator vanaf deze website.
- 5. Ga vanuit het OnWorks Linux-besturingssysteem dat u zojuist hebt gestart naar onze bestandsbeheerder https://www.onworks.net/myfiles.php?username=XXXXX met de gewenste gebruikersnaam.
- 6. Download de applicatie, installeer hem en voer hem uit.
SCREENSHOTS
Ad
maskrcnn-benchmark
PRODUCTBESCHRIJVING
Mask R-CNN Benchmark is a PyTorch-based framework that provides high-performance implementations of object detection, instance segmentation, and keypoint detection models. Originally built to benchmark Mask R-CNN and related models, it offers a clean, modular design to train and evaluate detection systems efficiently on standard datasets like COCO. The framework integrates critical components—region proposal networks (RPNs), RoIAlign layers, mask heads, and backbone architectures such as ResNet and FPN—optimized for both accuracy and speed. It supports multi-GPU distributed training, mixed precision, and custom data loaders for new datasets. Built as a reference implementation, it became a foundation for the next-generation Detectron2, yet remains widely used for research needing a stable, reproducible environment. Visualization tools, model zoo checkpoints, and benchmark scripts make it easy to replicate state-of-the-art results or fine-tune models for custom tasks.
Kenmerken
- High-performance implementations of Mask R-CNN, Faster R-CNN, and keypoint models
- Modular components for RPNs, RoIAlign, mask heads, and backbones
- Multi-GPU distributed training and mixed precision support
- Dataset support and loaders for COCO, Pascal VOC, and custom datasets
- Visualization and evaluation tools for detection and segmentation results
- Reproducible reference implementation for benchmarking and fine-tuning
Programmeertaal
Python
Categorieën
This is an application that can also be fetched from https://sourceforge.net/projects/maskrcnn-benchmark.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.