GoGPT Best VPN GoSearch

OnWorks-favicon

DLRM download for Windows

Free download DLRM Windows app to run online win Wine in Ubuntu online, Fedora online or Debian online

This is the Windows app named DLRM whose latest release can be downloaded as dlrmsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

Download and run online this app named DLRM with OnWorks for free.

Volg deze instructies om deze app uit te voeren:

- 1. Download deze applicatie op uw pc.

- 2. Voer in onze bestandsbeheerder https://www.onworks.net/myfiles.php?username=XXXXX in met de gebruikersnaam die u wilt.

- 3. Upload deze applicatie in zo'n bestandsbeheerder.

- 4. Start een OS OnWorks online emulator vanaf deze website, maar een betere Windows online emulator.

- 5. Ga vanuit het OnWorks Windows-besturingssysteem dat u zojuist hebt gestart naar onze bestandsbeheerder https://www.onworks.net/myfiles.php?username=XXXXX met de gewenste gebruikersnaam.

- 6. Download de applicatie en installeer deze.

- 7. Download Wine van de softwarebronnen voor Linux-distributies. Eenmaal geïnstalleerd, kunt u vervolgens dubbelklikken op de app om ze met Wine uit te voeren. Je kunt ook PlayOnLinux proberen, een mooie interface via Wine waarmee je populaire Windows-programma's en -games kunt installeren.

Wine is een manier om Windows-software op Linux uit te voeren, maar zonder dat Windows vereist is. Wine is een open-source Windows-compatibiliteitslaag die Windows-programma's rechtstreeks op elke Linux-desktop kan uitvoeren. In wezen probeert Wine genoeg van Windows opnieuw te implementeren, zodat het al die Windows-applicaties kan draaien zonder Windows echt nodig te hebben.

SCREENSHOTS

Ad


DLRM


PRODUCTBESCHRIJVING

DLRM (Deep Learning Recommendation Model) is Meta’s open-source reference implementation for large-scale recommendation systems built to handle extremely high-dimensional sparse features and embedding tables. The architecture combines dense (MLP) and sparse (embedding) branches, then interacts features via dot product or feature interactions before passing through further dense layers to predict click-through, ranking scores, or conversion probabilities. The implementation is optimized for performance at scale, supporting multi-GPU and multi-node execution, quantization, embedding partitioning, and pipelined I/O to feed huge embeddings efficiently. It includes data loaders for standard benchmarks (like Criteo), training scripts, evaluation tools, and capabilities like mixed precision, gradient compression, and memory fusion to maximize throughput.



Kenmerken

  • Hybrid architecture combining sparse embeddings and dense MLP branches
  • Efficient feature interaction (e.g. dot product, permutation) between sparse and dense features
  • Multi-GPU and distributed training with embedding partitioning and gradient synchronization
  • Support for quantization, memory optimization, and pipelined embedding I/O
  • Training / evaluation support for large-scale datasets like Criteo, Avazu
  • Baseline reference for industry and academic recommendation models


Programmeertaal

Python


Categorieën

Kaders voor diep leren

This is an application that can also be fetched from https://sourceforge.net/projects/dlrm.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.


Gratis servers en werkstations

Windows- en Linux-apps downloaden

Linux-commando's

Ad




×
advertentie
❤️Koop, boek of koop hier — het is gratis, en zo blijven onze diensten gratis.