This is the Windows app named Flow Matching whose latest release can be downloaded as flow_matchingsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Flow Matching with OnWorks for free.
Volg deze instructies om deze app uit te voeren:
- 1. Download deze applicatie op uw pc.
- 2. Voer in onze bestandsbeheerder https://www.onworks.net/myfiles.php?username=XXXXX in met de gebruikersnaam die u wilt.
- 3. Upload deze applicatie in zo'n bestandsbeheerder.
- 4. Start een OS OnWorks online emulator vanaf deze website, maar een betere Windows online emulator.
- 5. Ga vanuit het OnWorks Windows-besturingssysteem dat u zojuist hebt gestart naar onze bestandsbeheerder https://www.onworks.net/myfiles.php?username=XXXXX met de gewenste gebruikersnaam.
- 6. Download de applicatie en installeer deze.
- 7. Download Wine van de softwarebronnen voor Linux-distributies. Eenmaal geïnstalleerd, kunt u vervolgens dubbelklikken op de app om ze met Wine uit te voeren. Je kunt ook PlayOnLinux proberen, een mooie interface via Wine waarmee je populaire Windows-programma's en -games kunt installeren.
Wine is een manier om Windows-software op Linux uit te voeren, maar zonder dat Windows vereist is. Wine is een open-source Windows-compatibiliteitslaag die Windows-programma's rechtstreeks op elke Linux-desktop kan uitvoeren. In wezen probeert Wine genoeg van Windows opnieuw te implementeren, zodat het al die Windows-applicaties kan draaien zonder Windows echt nodig te hebben.
SCREENSHOTS
Ad
Stroommatching
PRODUCTBESCHRIJVING
flow_matching is a PyTorch library implementing flow matching algorithms in both continuous and discrete settings, enabling generative modeling via matching vector fields rather than diffusion. The underlying idea is to parameterize a flow (a time-dependent vector field) that transports samples from a simple base distribution to a target distribution, and train via matching of flows without requiring score estimation or noisy corruption—this can lead to more efficient or stable generative training. The library supports both continuous-time flows (via differential equations) and discrete-time analogues, giving flexibility in design and tradeoffs. It provides examples across modalities (images, toy 2D distributions) to help users understand how to apply flow matching in practice. The codebase includes notebooks illustrating 2D flow matching, discrete flows, and Riemannian flow matching on curved manifolds (e.g. flat torus) for non-Euclidean support.
Kenmerken
- Continuous-time flow matching for generative modeling
- Discrete flow matching methods for alternate tradeoffs
- Support for Riemannian manifold flow matching (non-Euclidean geometries)
- Example notebooks illustrating 2D flows, discrete flows, and manifold flows
- PyTorch implementation with utilities and integration ready
- Setup scripts, environment specification, and easy installation via setup.py
Programmeertaal
Python
Categorieën
This is an application that can also be fetched from https://sourceforge.net/projects/flow-matching.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.