EnglishFrenchSpanish

OnWorks favicon

ffmpeg-formats - Online in the Cloud

Run ffmpeg-formats in OnWorks free hosting provider over Ubuntu Online, Fedora Online, Windows online emulator or MAC OS online emulator

This is the command ffmpeg-formats that can be run in the OnWorks free hosting provider using one of our multiple free online workstations such as Ubuntu Online, Fedora Online, Windows online emulator or MAC OS online emulator

PROGRAM:

NAME


ffmpeg-formats - FFmpeg formats

DESCRIPTION


This document describes the supported formats (muxers and demuxers) provided by the
libavformat library.

FORMAT OPTIONS


The libavformat library provides some generic global options, which can be set on all the
muxers and demuxers. In addition each muxer or demuxer may support so-called private
options, which are specific for that component.

Options may be set by specifying -option value in the FFmpeg tools, or by setting the
value explicitly in the "AVFormatContext" options or using the libavutil/opt.h API for
programmatic use.

The list of supported options follows:

avioflags flags (input/output)
Possible values:

direct
Reduce buffering.

probesize integer (input)
Set probing size in bytes, i.e. the size of the data to analyze to get stream
information. A higher value will enable detecting more information in case it is
dispersed into the stream, but will increase latency. Must be an integer not lesser
than 32. It is 5000000 by default.

packetsize integer (output)
Set packet size.

fflags flags (input/output)
Set format flags.

Possible values:

ignidx
Ignore index.

fastseek
Enable fast, but inaccurate seeks for some formats.

genpts
Generate PTS.

nofillin
Do not fill in missing values that can be exactly calculated.

noparse
Disable AVParsers, this needs "+nofillin" too.

igndts
Ignore DTS.

discardcorrupt
Discard corrupted frames.

sortdts
Try to interleave output packets by DTS.

keepside
Do not merge side data.

latm
Enable RTP MP4A-LATM payload.

nobuffer
Reduce the latency introduced by optional buffering

bitexact
Only write platform-, build- and time-independent data. This ensures that file
and data checksums are reproducible and match between platforms. Its primary use
is for regression testing.

seek2any integer (input)
Allow seeking to non-keyframes on demuxer level when supported if set to 1. Default
is 0.

analyzeduration integer (input)
Specify how many microseconds are analyzed to probe the input. A higher value will
enable detecting more accurate information, but will increase latency. It defaults to
5,000,000 microseconds = 5 seconds.

cryptokey hexadecimal string (input)
Set decryption key.

indexmem integer (input)
Set max memory used for timestamp index (per stream).

rtbufsize integer (input)
Set max memory used for buffering real-time frames.

fdebug flags (input/output)
Print specific debug info.

Possible values:

ts
max_delay integer (input/output)
Set maximum muxing or demuxing delay in microseconds.

fpsprobesize integer (input)
Set number of frames used to probe fps.

audio_preload integer (output)
Set microseconds by which audio packets should be interleaved earlier.

chunk_duration integer (output)
Set microseconds for each chunk.

chunk_size integer (output)
Set size in bytes for each chunk.

err_detect, f_err_detect flags (input)
Set error detection flags. "f_err_detect" is deprecated and should be used only via
the ffmpeg tool.

Possible values:

crccheck
Verify embedded CRCs.

bitstream
Detect bitstream specification deviations.

buffer
Detect improper bitstream length.

explode
Abort decoding on minor error detection.

careful
Consider things that violate the spec and have not been seen in the wild as
errors.

compliant
Consider all spec non compliancies as errors.

aggressive
Consider things that a sane encoder should not do as an error.

max_interleave_delta integer (output)
Set maximum buffering duration for interleaving. The duration is expressed in
microseconds, and defaults to 1000000 (1 second).

To ensure all the streams are interleaved correctly, libavformat will wait until it
has at least one packet for each stream before actually writing any packets to the
output file. When some streams are "sparse" (i.e. there are large gaps between
successive packets), this can result in excessive buffering.

This field specifies the maximum difference between the timestamps of the first and
the last packet in the muxing queue, above which libavformat will output a packet
regardless of whether it has queued a packet for all the streams.

If set to 0, libavformat will continue buffering packets until it has a packet for
each stream, regardless of the maximum timestamp difference between the buffered
packets.

use_wallclock_as_timestamps integer (input)
Use wallclock as timestamps.

avoid_negative_ts integer (output)
Possible values:

make_non_negative
Shift timestamps to make them non-negative. Also note that this affects only
leading negative timestamps, and not non-monotonic negative timestamps.

make_zero
Shift timestamps so that the first timestamp is 0.

auto (default)
Enables shifting when required by the target format.

disabled
Disables shifting of timestamp.

When shifting is enabled, all output timestamps are shifted by the same amount. Audio,
video, and subtitles desynching and relative timestamp differences are preserved
compared to how they would have been without shifting.

skip_initial_bytes integer (input)
Set number of bytes to skip before reading header and frames if set to 1. Default is
0.

correct_ts_overflow integer (input)
Correct single timestamp overflows if set to 1. Default is 1.

flush_packets integer (output)
Flush the underlying I/O stream after each packet. Default 1 enables it, and has the
effect of reducing the latency; 0 disables it and may slightly increase performance in
some cases.

output_ts_offset offset (output)
Set the output time offset.

offset must be a time duration specification, see the Time duration section in the
ffmpeg-utils(1) manual.

The offset is added by the muxer to the output timestamps.

Specifying a positive offset means that the corresponding streams are delayed bt the
time duration specified in offset. Default value is 0 (meaning that no offset is
applied).

format_whitelist list (input)
"," separated List of allowed demuxers. By default all are allowed.

dump_separator string (input)
Separator used to separate the fields printed on the command line about the Stream
parameters. For example to separate the fields with newlines and indention:

ffprobe -dump_separator "
" -i ~/videos/matrixbench_mpeg2.mpg

Format stream specifiers
Format stream specifiers allow selection of one or more streams that match specific
properties.

Possible forms of stream specifiers are:

stream_index
Matches the stream with this index.

stream_type[:stream_index]
stream_type is one of following: 'v' for video, 'a' for audio, 's' for subtitle, 'd'
for data, and 't' for attachments. If stream_index is given, then it matches the
stream number stream_index of this type. Otherwise, it matches all streams of this
type.

p:program_id[:stream_index]
If stream_index is given, then it matches the stream with number stream_index in the
program with the id program_id. Otherwise, it matches all streams in the program.

#stream_id
Matches the stream by a format-specific ID.

The exact semantics of stream specifiers is defined by the
"avformat_match_stream_specifier()" function declared in the libavformat/avformat.h
header.

DEMUXERS


Demuxers are configured elements in FFmpeg that can read the multimedia streams from a
particular type of file.

When you configure your FFmpeg build, all the supported demuxers are enabled by default.
You can list all available ones using the configure option "--list-demuxers".

You can disable all the demuxers using the configure option "--disable-demuxers", and
selectively enable a single demuxer with the option "--enable-demuxer=DEMUXER", or disable
it with the option "--disable-demuxer=DEMUXER".

The option "-formats" of the ff* tools will display the list of enabled demuxers.

The description of some of the currently available demuxers follows.

aa
Audible Format 2, 3, and 4 demuxer.

This demuxer is used to demux Audible Format 2, 3, and 4 (.aa) files.

applehttp
Apple HTTP Live Streaming demuxer.

This demuxer presents all AVStreams from all variant streams. The id field is set to the
bitrate variant index number. By setting the discard flags on AVStreams (by pressing 'a'
or 'v' in ffplay), the caller can decide which variant streams to actually receive. The
total bitrate of the variant that the stream belongs to is available in a metadata key
named "variant_bitrate".

apng
Animated Portable Network Graphics demuxer.

This demuxer is used to demux APNG files. All headers, but the PNG signature, up to (but
not including) the first fcTL chunk are transmitted as extradata. Frames are then split
as being all the chunks between two fcTL ones, or between the last fcTL and IEND chunks.

-ignore_loop bool
Ignore the loop variable in the file if set.

-max_fps int
Maximum framerate in frames per second (0 for no limit).

-default_fps int
Default framerate in frames per second when none is specified in the file (0 meaning
as fast as possible).

asf
Advanced Systems Format demuxer.

This demuxer is used to demux ASF files and MMS network streams.

-no_resync_search bool
Do not try to resynchronize by looking for a certain optional start code.

concat
Virtual concatenation script demuxer.

This demuxer reads a list of files and other directives from a text file and demuxes them
one after the other, as if all their packet had been muxed together.

The timestamps in the files are adjusted so that the first file starts at 0 and each next
file starts where the previous one finishes. Note that it is done globally and may cause
gaps if all streams do not have exactly the same length.

All files must have the same streams (same codecs, same time base, etc.).

The duration of each file is used to adjust the timestamps of the next file: if the
duration is incorrect (because it was computed using the bit-rate or because the file is
truncated, for example), it can cause artifacts. The "duration" directive can be used to
override the duration stored in each file.

Syntax

The script is a text file in extended-ASCII, with one directive per line. Empty lines,
leading spaces and lines starting with '#' are ignored. The following directive is
recognized:

"file path"
Path to a file to read; special characters and spaces must be escaped with backslash
or single quotes.

All subsequent file-related directives apply to that file.

"ffconcat version 1.0"
Identify the script type and version. It also sets the safe option to 1 if it was to
its default -1.

To make FFmpeg recognize the format automatically, this directive must appears exactly
as is (no extra space or byte-order-mark) on the very first line of the script.

"duration dur"
Duration of the file. This information can be specified from the file; specifying it
here may be more efficient or help if the information from the file is not available
or accurate.

If the duration is set for all files, then it is possible to seek in the whole
concatenated video.

"inpoint timestamp"
In point of the file. When the demuxer opens the file it instantly seeks to the
specified timestamp. Seeking is done so that all streams can be presented successfully
at In point.

This directive works best with intra frame codecs, because for non-intra frame ones
you will usually get extra packets before the actual In point and the decoded content
will most likely contain frames before In point too.

For each file, packets before the file In point will have timestamps less than the
calculated start timestamp of the file (negative in case of the first file), and the
duration of the files (if not specified by the "duration" directive) will be reduced
based on their specified In point.

Because of potential packets before the specified In point, packet timestamps may
overlap between two concatenated files.

"outpoint timestamp"
Out point of the file. When the demuxer reaches the specified decoding timestamp in
any of the streams, it handles it as an end of file condition and skips the current
and all the remaining packets from all streams.

Out point is exclusive, which means that the demuxer will not output packets with a
decoding timestamp greater or equal to Out point.

This directive works best with intra frame codecs and formats where all streams are
tightly interleaved. For non-intra frame codecs you will usually get additional
packets with presentation timestamp after Out point therefore the decoded content will
most likely contain frames after Out point too. If your streams are not tightly
interleaved you may not get all the packets from all streams before Out point and you
may only will be able to decode the earliest stream until Out point.

The duration of the files (if not specified by the "duration" directive) will be
reduced based on their specified Out point.

"file_packet_metadata key=value"
Metadata of the packets of the file. The specified metadata will be set for each file
packet. You can specify this directive multiple times to add multiple metadata
entries.

"stream"
Introduce a stream in the virtual file. All subsequent stream-related directives
apply to the last introduced stream. Some streams properties must be set in order to
allow identifying the matching streams in the subfiles. If no streams are defined in
the script, the streams from the first file are copied.

"exact_stream_id id"
Set the id of the stream. If this directive is given, the string with the
corresponding id in the subfiles will be used. This is especially useful for MPEG-PS
(VOB) files, where the order of the streams is not reliable.

Options

This demuxer accepts the following option:

safe
If set to 1, reject unsafe file paths. A file path is considered safe if it does not
contain a protocol specification and is relative and all components only contain
characters from the portable character set (letters, digits, period, underscore and
hyphen) and have no period at the beginning of a component.

If set to 0, any file name is accepted.

The default is -1, it is equivalent to 1 if the format was automatically probed and 0
otherwise.

auto_convert
If set to 1, try to perform automatic conversions on packet data to make the streams
concatenable. The default is 1.

Currently, the only conversion is adding the h264_mp4toannexb bitstream filter to
H.264 streams in MP4 format. This is necessary in particular if there are resolution
changes.

flv
Adobe Flash Video Format demuxer.

This demuxer is used to demux FLV files and RTMP network streams.

-flv_metadata bool
Allocate the streams according to the onMetaData array content.

libgme
The Game Music Emu library is a collection of video game music file emulators.

See <http://code.google.com/p/game-music-emu/> for more information.

Some files have multiple tracks. The demuxer will pick the first track by default. The
track_index option can be used to select a different track. Track indexes start at 0. The
demuxer exports the number of tracks as tracks meta data entry.

For very large files, the max_size option may have to be adjusted.

libquvi
Play media from Internet services using the quvi project.

The demuxer accepts a format option to request a specific quality. It is by default set to
best.

See <http://quvi.sourceforge.net/> for more information.

FFmpeg needs to be built with "--enable-libquvi" for this demuxer to be enabled.

gif
Animated GIF demuxer.

It accepts the following options:

min_delay
Set the minimum valid delay between frames in hundredths of seconds. Range is 0 to
6000. Default value is 2.

max_gif_delay
Set the maximum valid delay between frames in hundredth of seconds. Range is 0 to
65535. Default value is 65535 (nearly eleven minutes), the maximum value allowed by
the specification.

default_delay
Set the default delay between frames in hundredths of seconds. Range is 0 to 6000.
Default value is 10.

ignore_loop
GIF files can contain information to loop a certain number of times (or infinitely).
If ignore_loop is set to 1, then the loop setting from the input will be ignored and
looping will not occur. If set to 0, then looping will occur and will cycle the number
of times according to the GIF. Default value is 1.

For example, with the overlay filter, place an infinitely looping GIF over another video:

ffmpeg -i input.mp4 -ignore_loop 0 -i input.gif -filter_complex overlay=shortest=1 out.mkv

Note that in the above example the shortest option for overlay filter is used to end the
output video at the length of the shortest input file, which in this case is input.mp4 as
the GIF in this example loops infinitely.

image2
Image file demuxer.

This demuxer reads from a list of image files specified by a pattern. The syntax and
meaning of the pattern is specified by the option pattern_type.

The pattern may contain a suffix which is used to automatically determine the format of
the images contained in the files.

The size, the pixel format, and the format of each image must be the same for all the
files in the sequence.

This demuxer accepts the following options:

framerate
Set the frame rate for the video stream. It defaults to 25.

loop
If set to 1, loop over the input. Default value is 0.

pattern_type
Select the pattern type used to interpret the provided filename.

pattern_type accepts one of the following values.

none
Disable pattern matching, therefore the video will only contain the specified
image. You should use this option if you do not want to create sequences from
multiple images and your filenames may contain special pattern characters.

sequence
Select a sequence pattern type, used to specify a sequence of files indexed by
sequential numbers.

A sequence pattern may contain the string "%d" or "%0Nd", which specifies the
position of the characters representing a sequential number in each filename
matched by the pattern. If the form "%d0Nd" is used, the string representing the
number in each filename is 0-padded and N is the total number of 0-padded digits
representing the number. The literal character '%' can be specified in the pattern
with the string "%%".

If the sequence pattern contains "%d" or "%0Nd", the first filename of the file
list specified by the pattern must contain a number inclusively contained between
start_number and start_number+start_number_range-1, and all the following numbers
must be sequential.

For example the pattern "img-%03d.bmp" will match a sequence of filenames of the
form img-001.bmp, img-002.bmp, ..., img-010.bmp, etc.; the pattern
"i%%m%%g-%d.jpg" loading="lazy" will match a sequence of filenames of the form i%m%g-1.jpg,
i%m%g-2.jpg, ..., i%m%g-10.jpg, etc.

Note that the pattern must not necessarily contain "%d" or "%0Nd", for example to
convert a single image file img.jpeg you can employ the command:

ffmpeg -i img.jpeg img.png

glob
Select a glob wildcard pattern type.

The pattern is interpreted like a "glob()" pattern. This is only selectable if
libavformat was compiled with globbing support.

glob_sequence (deprecated, will be removed)
Select a mixed glob wildcard/sequence pattern.

If your version of libavformat was compiled with globbing support, and the
provided pattern contains at least one glob meta character among "%*?[]{}" that is
preceded by an unescaped "%", the pattern is interpreted like a "glob()" pattern,
otherwise it is interpreted like a sequence pattern.

All glob special characters "%*?[]{}" must be prefixed with "%". To escape a
literal "%" you shall use "%%".

For example the pattern "foo-%*.jpeg" will match all the filenames prefixed by
"foo-" and terminating with ".jpeg", and "foo-%?%?%?.jpeg" will match all the
filenames prefixed with "foo-", followed by a sequence of three characters, and
terminating with ".jpeg".

This pattern type is deprecated in favor of glob and sequence.

Default value is glob_sequence.

pixel_format
Set the pixel format of the images to read. If not specified the pixel format is
guessed from the first image file in the sequence.

start_number
Set the index of the file matched by the image file pattern to start to read from.
Default value is 0.

start_number_range
Set the index interval range to check when looking for the first image file in the
sequence, starting from start_number. Default value is 5.

ts_from_file
If set to 1, will set frame timestamp to modification time of image file. Note that
monotonity of timestamps is not provided: images go in the same order as without this
option. Default value is 0. If set to 2, will set frame timestamp to the modification
time of the image file in nanosecond precision.

video_size
Set the video size of the images to read. If not specified the video size is guessed
from the first image file in the sequence.

Examples

· Use ffmpeg for creating a video from the images in the file sequence img-001.jpeg,
img-002.jpeg, ..., assuming an input frame rate of 10 frames per second:

ffmpeg -framerate 10 -i 'img-%03d.jpeg' out.mkv

· As above, but start by reading from a file with index 100 in the sequence:

ffmpeg -framerate 10 -start_number 100 -i 'img-%03d.jpeg' out.mkv

· Read images matching the "*.png" loading="lazy" glob pattern , that is all the files terminating with
the ".png" loading="lazy" suffix:

ffmpeg -framerate 10 -pattern_type glob -i "*.png" loading="lazy" out.mkv

mov/mp4/3gp/Quicktme
Quicktime / MP4 demuxer.

This demuxer accepts the following options:

enable_drefs
Enable loading of external tracks, disabled by default. Enabling this can
theoretically leak information in some use cases.

use_absolute_path
Allows loading of external tracks via absolute paths, disabled by default. Enabling
this poses a security risk. It should only be enabled if the source is known to be non
malicious.

mpegts
MPEG-2 transport stream demuxer.

This demuxer accepts the following options:

resync_size
Set size limit for looking up a new synchronization. Default value is 65536.

fix_teletext_pts
Override teletext packet PTS and DTS values with the timestamps calculated from the
PCR of the first program which the teletext stream is part of and is not discarded.
Default value is 1, set this option to 0 if you want your teletext packet PTS and DTS
values untouched.

ts_packetsize
Output option carrying the raw packet size in bytes. Show the detected raw packet
size, cannot be set by the user.

scan_all_pmts
Scan and combine all PMTs. The value is an integer with value from -1 to 1 (-1 means
automatic setting, 1 means enabled, 0 means disabled). Default value is -1.

rawvideo
Raw video demuxer.

This demuxer allows one to read raw video data. Since there is no header specifying the
assumed video parameters, the user must specify them in order to be able to decode the
data correctly.

This demuxer accepts the following options:

framerate
Set input video frame rate. Default value is 25.

pixel_format
Set the input video pixel format. Default value is "yuv420p".

video_size
Set the input video size. This value must be specified explicitly.

For example to read a rawvideo file input.raw with ffplay, assuming a pixel format of
"rgb24", a video size of "320x240", and a frame rate of 10 images per second, use the
command:

ffplay -f rawvideo -pixel_format rgb24 -video_size 320x240 -framerate 10 input.raw

sbg
SBaGen script demuxer.

This demuxer reads the script language used by SBaGen <http://uazu.net/sbagen/> to
generate binaural beats sessions. A SBG script looks like that:

-SE
a: 300-2.5/3 440+4.5/0
b: 300-2.5/0 440+4.5/3
off: -
NOW == a
+0:07:00 == b
+0:14:00 == a
+0:21:00 == b
+0:30:00 off

A SBG script can mix absolute and relative timestamps. If the script uses either only
absolute timestamps (including the script start time) or only relative ones, then its
layout is fixed, and the conversion is straightforward. On the other hand, if the script
mixes both kind of timestamps, then the NOW reference for relative timestamps will be
taken from the current time of day at the time the script is read, and the script layout
will be frozen according to that reference. That means that if the script is directly
played, the actual times will match the absolute timestamps up to the sound controller's
clock accuracy, but if the user somehow pauses the playback or seeks, all times will be
shifted accordingly.

tedcaptions
JSON captions used for <http://www.ted.com/>.

TED does not provide links to the captions, but they can be guessed from the page. The
file tools/bookmarklets.html from the FFmpeg source tree contains a bookmarklet to expose
them.

This demuxer accepts the following option:

start_time
Set the start time of the TED talk, in milliseconds. The default is 15000 (15s). It is
used to sync the captions with the downloadable videos, because they include a 15s
intro.

Example: convert the captions to a format most players understand:

ffmpeg -i http://www.ted.com/talks/subtitles/id/1/lang/en talk1-en.srt

MUXERS


Muxers are configured elements in FFmpeg which allow writing multimedia streams to a
particular type of file.

When you configure your FFmpeg build, all the supported muxers are enabled by default. You
can list all available muxers using the configure option "--list-muxers".

You can disable all the muxers with the configure option "--disable-muxers" and
selectively enable / disable single muxers with the options "--enable-muxer=MUXER" /
"--disable-muxer=MUXER".

The option "-formats" of the ff* tools will display the list of enabled muxers.

A description of some of the currently available muxers follows.

aiff
Audio Interchange File Format muxer.

Options

It accepts the following options:

write_id3v2
Enable ID3v2 tags writing when set to 1. Default is 0 (disabled).

id3v2_version
Select ID3v2 version to write. Currently only version 3 and 4 (aka. ID3v2.3 and
ID3v2.4) are supported. The default is version 4.

crc
CRC (Cyclic Redundancy Check) testing format.

This muxer computes and prints the Adler-32 CRC of all the input audio and video frames.
By default audio frames are converted to signed 16-bit raw audio and video frames to raw
video before computing the CRC.

The output of the muxer consists of a single line of the form: CRC=0xCRC, where CRC is a
hexadecimal number 0-padded to 8 digits containing the CRC for all the decoded input
frames.

See also the framecrc muxer.

Examples

For example to compute the CRC of the input, and store it in the file out.crc:

ffmpeg -i INPUT -f crc out.crc

You can print the CRC to stdout with the command:

ffmpeg -i INPUT -f crc -

You can select the output format of each frame with ffmpeg by specifying the audio and
video codec and format. For example to compute the CRC of the input audio converted to PCM
unsigned 8-bit and the input video converted to MPEG-2 video, use the command:

ffmpeg -i INPUT -c:a pcm_u8 -c:v mpeg2video -f crc -

framecrc
Per-packet CRC (Cyclic Redundancy Check) testing format.

This muxer computes and prints the Adler-32 CRC for each audio and video packet. By
default audio frames are converted to signed 16-bit raw audio and video frames to raw
video before computing the CRC.

The output of the muxer consists of a line for each audio and video packet of the form:

<stream_index>, <packet_dts>, <packet_pts>, <packet_duration>, <packet_size>, 0x<CRC>

CRC is a hexadecimal number 0-padded to 8 digits containing the CRC of the packet.

Examples

For example to compute the CRC of the audio and video frames in INPUT, converted to raw
audio and video packets, and store it in the file out.crc:

ffmpeg -i INPUT -f framecrc out.crc

To print the information to stdout, use the command:

ffmpeg -i INPUT -f framecrc -

With ffmpeg, you can select the output format to which the audio and video frames are
encoded before computing the CRC for each packet by specifying the audio and video codec.
For example, to compute the CRC of each decoded input audio frame converted to PCM
unsigned 8-bit and of each decoded input video frame converted to MPEG-2 video, use the
command:

ffmpeg -i INPUT -c:a pcm_u8 -c:v mpeg2video -f framecrc -

See also the crc muxer.

framemd5
Per-packet MD5 testing format.

This muxer computes and prints the MD5 hash for each audio and video packet. By default
audio frames are converted to signed 16-bit raw audio and video frames to raw video before
computing the hash.

The output of the muxer consists of a line for each audio and video packet of the form:

<stream_index>, <packet_dts>, <packet_pts>, <packet_duration>, <packet_size>, <MD5>

MD5 is a hexadecimal number representing the computed MD5 hash for the packet.

Examples

For example to compute the MD5 of the audio and video frames in INPUT, converted to raw
audio and video packets, and store it in the file out.md5:

ffmpeg -i INPUT -f framemd5 out.md5

To print the information to stdout, use the command:

ffmpeg -i INPUT -f framemd5 -

See also the md5 muxer.

gif
Animated GIF muxer.

It accepts the following options:

loop
Set the number of times to loop the output. Use "-1" for no loop, 0 for looping
indefinitely (default).

final_delay
Force the delay (expressed in centiseconds) after the last frame. Each frame ends with
a delay until the next frame. The default is "-1", which is a special value to tell
the muxer to re-use the previous delay. In case of a loop, you might want to customize
this value to mark a pause for instance.

For example, to encode a gif looping 10 times, with a 5 seconds delay between the loops:

ffmpeg -i INPUT -loop 10 -final_delay 500 out.gif

Note 1: if you wish to extract the frames in separate GIF files, you need to force the
image2 muxer:

ffmpeg -i INPUT -c:v gif -f image2 "out%d.gif"

Note 2: the GIF format has a very small time base: the delay between two frames can not be
smaller than one centi second.

hls
Apple HTTP Live Streaming muxer that segments MPEG-TS according to the HTTP Live Streaming
(HLS) specification.

It creates a playlist file, and one or more segment files. The output filename specifies
the playlist filename.

By default, the muxer creates a file for each segment produced. These files have the same
name as the playlist, followed by a sequential number and a .ts extension.

For example, to convert an input file with ffmpeg:

ffmpeg -i in.nut out.m3u8

This example will produce the playlist, out.m3u8, and segment files: out0.ts, out1.ts,
out2.ts, etc.

See also the segment muxer, which provides a more generic and flexible implementation of a
segmenter, and can be used to perform HLS segmentation.

Options

This muxer supports the following options:

hls_time seconds
Set the segment length in seconds. Default value is 2.

hls_list_size size
Set the maximum number of playlist entries. If set to 0 the list file will contain all
the segments. Default value is 5.

hls_ts_options options_list
Set output format options using a :-separated list of key=value parameters. Values
containing ":" special characters must be escaped.

hls_wrap wrap
Set the number after which the segment filename number (the number specified in each
segment file) wraps. If set to 0 the number will be never wrapped. Default value is 0.

This option is useful to avoid to fill the disk with many segment files, and limits
the maximum number of segment files written to disk to wrap.

start_number number
Start the playlist sequence number from number. Default value is 0.

hls_allow_cache allowcache
Explicitly set whether the client MAY \fIs0(1) or MUST NOT \fIs0(0) cache media
segments.

hls_base_url baseurl
Append baseurl to every entry in the playlist. Useful to generate playlists with
absolute paths.

Note that the playlist sequence number must be unique for each segment and it is not
to be confused with the segment filename sequence number which can be cyclic, for
example if the wrap option is specified.

hls_segment_filename filename
Set the segment filename. Unless hls_flags single_file is set filename is used as a
string format with the segment number:

ffmpeg in.nut -hls_segment_filename 'file%03d.ts' out.m3u8

This example will produce the playlist, out.m3u8, and segment files: file000.ts,
file001.ts, file002.ts, etc.

hls_key_info_file key_info_file
Use the information in key_info_file for segment encryption. The first line of
key_info_file specifies the key URI written to the playlist. The key URL is used to
access the encryption key during playback. The second line specifies the path to the
key file used to obtain the key during the encryption process. The key file is read as
a single packed array of 16 octets in binary format. The optional third line specifies
the initialization vector (IV) as a hexadecimal string to be used instead of the
segment sequence number (default) for encryption. Changes to key_info_file will result
in segment encryption with the new key/IV and an entry in the playlist for the new key
URI/IV.

Key info file format:

<key URI>
<key file path>
<IV> (optional)

Example key URIs:

http://server/file.key
/path/to/file.key
file.key

Example key file paths:

file.key
/path/to/file.key

Example IV:

0123456789ABCDEF0123456789ABCDEF

Key info file example:

http://server/file.key
/path/to/file.key
0123456789ABCDEF0123456789ABCDEF

Example shell script:

#!/bin/sh
BASE_URL=${1:-'.'}
openssl rand 16 > file.key
echo $BASE_URL/file.key > file.keyinfo
echo file.key >> file.keyinfo
echo $(openssl rand -hex 16) >> file.keyinfo
ffmpeg -f lavfi -re -i testsrc -c:v h264 -hls_flags delete_segments \
-hls_key_info_file file.keyinfo out.m3u8

hls_flags single_file
If this flag is set, the muxer will store all segments in a single MPEG-TS file, and
will use byte ranges in the playlist. HLS playlists generated with this way will have
the version number 4. For example:

ffmpeg -i in.nut -hls_flags single_file out.m3u8

Will produce the playlist, out.m3u8, and a single segment file, out.ts.

hls_flags delete_segments
Segment files removed from the playlist are deleted after a period of time equal to
the duration of the segment plus the duration of the playlist.

ico
ICO file muxer.

Microsoft's icon file format (ICO) has some strict limitations that should be noted:

· Size cannot exceed 256 pixels in any dimension

· Only BMP and PNG images can be stored

· If a BMP image is used, it must be one of the following pixel formats:

BMP Bit Depth FFmpeg Pixel Format
1bit pal8
4bit pal8
8bit pal8
16bit rgb555le
24bit bgr24
32bit bgra

· If a BMP image is used, it must use the BITMAPINFOHEADER DIB header

· If a PNG image is used, it must use the rgba pixel format

image2
Image file muxer.

The image file muxer writes video frames to image files.

The output filenames are specified by a pattern, which can be used to produce sequentially
numbered series of files. The pattern may contain the string "%d" or "%0Nd", this string
specifies the position of the characters representing a numbering in the filenames. If the
form "%0Nd" is used, the string representing the number in each filename is 0-padded to N
digits. The literal character '%' can be specified in the pattern with the string "%%".

If the pattern contains "%d" or "%0Nd", the first filename of the file list specified will
contain the number 1, all the following numbers will be sequential.

The pattern may contain a suffix which is used to automatically determine the format of
the image files to write.

For example the pattern "img-%03d.bmp" will specify a sequence of filenames of the form
img-001.bmp, img-002.bmp, ..., img-010.bmp, etc. The pattern "img%%-%d.jpg" loading="lazy" will specify
a sequence of filenames of the form img%-1.jpg, img%-2.jpg, ..., img%-10.jpg, etc.

Examples

The following example shows how to use ffmpeg for creating a sequence of files
img-001.jpeg, img-002.jpeg, ..., taking one image every second from the input video:

ffmpeg -i in.avi -vsync 1 -r 1 -f image2 'img-%03d.jpeg'

Note that with ffmpeg, if the format is not specified with the "-f" option and the output
filename specifies an image file format, the image2 muxer is automatically selected, so
the previous command can be written as:

ffmpeg -i in.avi -vsync 1 -r 1 'img-%03d.jpeg'

Note also that the pattern must not necessarily contain "%d" or "%0Nd", for example to
create a single image file img.jpeg from the input video you can employ the command:

ffmpeg -i in.avi -f image2 -frames:v 1 img.jpeg

The strftime option allows you to expand the filename with date and time information.
Check the documentation of the "strftime()" function for the syntax.

For example to generate image files from the "strftime()" "%Y-%m-%d_%H-%M-%S" pattern, the
following ffmpeg command can be used:

ffmpeg -f v4l2 -r 1 -i /dev/video0 -f image2 -strftime 1 "%Y-%m-%d_%H-%M-%S.jpg"

Options

start_number
Start the sequence from the specified number. Default value is 0.

update
If set to 1, the filename will always be interpreted as just a filename, not a
pattern, and the corresponding file will be continuously overwritten with new images.
Default value is 0.

strftime
If set to 1, expand the filename with date and time information from "strftime()".
Default value is 0.

The image muxer supports the .Y.U.V image file format. This format is special in that that
each image frame consists of three files, for each of the YUV420P components. To read or
write this image file format, specify the name of the '.Y' file. The muxer will
automatically open the '.U' and '.V' files as required.

matroska
Matroska container muxer.

This muxer implements the matroska and webm container specs.

Metadata

The recognized metadata settings in this muxer are:

title
Set title name provided to a single track.

language
Specify the language of the track in the Matroska languages form.

The language can be either the 3 letters bibliographic ISO-639-2 (ISO 639-2/B) form
(like "fre" for French), or a language code mixed with a country code for specialities
in languages (like "fre-ca" for Canadian French).

stereo_mode
Set stereo 3D video layout of two views in a single video track.

The following values are recognized:

mono
video is not stereo

left_right
Both views are arranged side by side, Left-eye view is on the left

bottom_top
Both views are arranged in top-bottom orientation, Left-eye view is at bottom

top_bottom
Both views are arranged in top-bottom orientation, Left-eye view is on top

checkerboard_rl
Each view is arranged in a checkerboard interleaved pattern, Left-eye view being
first

checkerboard_lr
Each view is arranged in a checkerboard interleaved pattern, Right-eye view being
first

row_interleaved_rl
Each view is constituted by a row based interleaving, Right-eye view is first row

row_interleaved_lr
Each view is constituted by a row based interleaving, Left-eye view is first row

col_interleaved_rl
Both views are arranged in a column based interleaving manner, Right-eye view is
first column

col_interleaved_lr
Both views are arranged in a column based interleaving manner, Left-eye view is
first column

anaglyph_cyan_red
All frames are in anaglyph format viewable through red-cyan filters

right_left
Both views are arranged side by side, Right-eye view is on the left

anaglyph_green_magenta
All frames are in anaglyph format viewable through green-magenta filters

block_lr
Both eyes laced in one Block, Left-eye view is first

block_rl
Both eyes laced in one Block, Right-eye view is first

For example a 3D WebM clip can be created using the following command line:

ffmpeg -i sample_left_right_clip.mpg -an -c:v libvpx -metadata stereo_mode=left_right -y stereo_clip.webm

Options

This muxer supports the following options:

reserve_index_space
By default, this muxer writes the index for seeking (called cues in Matroska terms) at
the end of the file, because it cannot know in advance how much space to leave for the
index at the beginning of the file. However for some use cases -- e.g. streaming
where seeking is possible but slow -- it is useful to put the index at the beginning
of the file.

If this option is set to a non-zero value, the muxer will reserve a given amount of
space in the file header and then try to write the cues there when the muxing
finishes. If the available space does not suffice, muxing will fail. A safe size for
most use cases should be about 50kB per hour of video.

Note that cues are only written if the output is seekable and this option will have no
effect if it is not.

md5
MD5 testing format.

This muxer computes and prints the MD5 hash of all the input audio and video frames. By
default audio frames are converted to signed 16-bit raw audio and video frames to raw
video before computing the hash.

The output of the muxer consists of a single line of the form: MD5=MD5, where MD5 is a
hexadecimal number representing the computed MD5 hash.

For example to compute the MD5 hash of the input converted to raw audio and video, and
store it in the file out.md5:

ffmpeg -i INPUT -f md5 out.md5

You can print the MD5 to stdout with the command:

ffmpeg -i INPUT -f md5 -

See also the framemd5 muxer.

mov, mp4, ismv
MOV/MP4/ISMV (Smooth Streaming) muxer.

The mov/mp4/ismv muxer supports fragmentation. Normally, a MOV/MP4 file has all the
metadata about all packets stored in one location (written at the end of the file, it can
be moved to the start for better playback by adding faststart to the movflags, or using
the qt-faststart tool). A fragmented file consists of a number of fragments, where packets
and metadata about these packets are stored together. Writing a fragmented file has the
advantage that the file is decodable even if the writing is interrupted (while a normal
MOV/MP4 is undecodable if it is not properly finished), and it requires less memory when
writing very long files (since writing normal MOV/MP4 files stores info about every single
packet in memory until the file is closed). The downside is that it is less compatible
with other applications.

Options

Fragmentation is enabled by setting one of the AVOptions that define how to cut the file
into fragments:

-moov_size bytes
Reserves space for the moov atom at the beginning of the file instead of placing the
moov atom at the end. If the space reserved is insufficient, muxing will fail.

-movflags frag_keyframe
Start a new fragment at each video keyframe.

-frag_duration duration
Create fragments that are duration microseconds long.

-frag_size size
Create fragments that contain up to size bytes of payload data.

-movflags frag_custom
Allow the caller to manually choose when to cut fragments, by calling
"av_write_frame(ctx, NULL)" to write a fragment with the packets written so far. (This
is only useful with other applications integrating libavformat, not from ffmpeg.)

-min_frag_duration duration
Don't create fragments that are shorter than duration microseconds long.

If more than one condition is specified, fragments are cut when one of the specified
conditions is fulfilled. The exception to this is "-min_frag_duration", which has to be
fulfilled for any of the other conditions to apply.

Additionally, the way the output file is written can be adjusted through a few other
options:

-movflags empty_moov
Write an initial moov atom directly at the start of the file, without describing any
samples in it. Generally, an mdat/moov pair is written at the start of the file, as a
normal MOV/MP4 file, containing only a short portion of the file. With this option
set, there is no initial mdat atom, and the moov atom only describes the tracks but
has a zero duration.

This option is implicitly set when writing ismv (Smooth Streaming) files.

-movflags separate_moof
Write a separate moof (movie fragment) atom for each track. Normally, packets for all
tracks are written in a moof atom (which is slightly more efficient), but with this
option set, the muxer writes one moof/mdat pair for each track, making it easier to
separate tracks.

This option is implicitly set when writing ismv (Smooth Streaming) files.

-movflags faststart
Run a second pass moving the index (moov atom) to the beginning of the file. This
operation can take a while, and will not work in various situations such as fragmented
output, thus it is not enabled by default.

-movflags rtphint
Add RTP hinting tracks to the output file.

-movflags disable_chpl
Disable Nero chapter markers (chpl atom). Normally, both Nero chapters and a
QuickTime chapter track are written to the file. With this option set, only the
QuickTime chapter track will be written. Nero chapters can cause failures when the
file is reprocessed with certain tagging programs, like mp3Tag 2.61a and iTunes 11.3,
most likely other versions are affected as well.

-movflags omit_tfhd_offset
Do not write any absolute base_data_offset in tfhd atoms. This avoids tying fragments
to absolute byte positions in the file/streams.

-movflags default_base_moof
Similarly to the omit_tfhd_offset, this flag avoids writing the absolute
base_data_offset field in tfhd atoms, but does so by using the new default-base-is-
moof flag instead. This flag is new from 14496-12:2012. This may make the fragments
easier to parse in certain circumstances (avoiding basing track fragment location
calculations on the implicit end of the previous track fragment).

Example

Smooth Streaming content can be pushed in real time to a publishing point on IIS with this
muxer. Example:

ffmpeg -re <<normal input/transcoding options>> -movflags isml+frag_keyframe -f ismv http://server/publishingpoint.isml/Streams(Encoder1)

Audible AAX

Audible AAX files are encrypted M4B files, and they can be decrypted by specifying a 4
byte activation secret.

ffmpeg -activation_bytes 1CEB00DA -i test.aax -vn -c:a copy output.mp4

mp3
The MP3 muxer writes a raw MP3 stream with the following optional features:

· An ID3v2 metadata header at the beginning (enabled by default). Versions 2.3 and 2.4
are supported, the "id3v2_version" private option controls which one is used (3 or 4).
Setting "id3v2_version" to 0 disables the ID3v2 header completely.

The muxer supports writing attached pictures (APIC frames) to the ID3v2 header. The
pictures are supplied to the muxer in form of a video stream with a single packet.
There can be any number of those streams, each will correspond to a single APIC frame.
The stream metadata tags title and comment map to APIC description and picture type
respectively. See <http://id3.org/id3v2.4.0-frames> for allowed picture types.

Note that the APIC frames must be written at the beginning, so the muxer will buffer
the audio frames until it gets all the pictures. It is therefore advised to provide
the pictures as soon as possible to avoid excessive buffering.

· A Xing/LAME frame right after the ID3v2 header (if present). It is enabled by default,
but will be written only if the output is seekable. The "write_xing" private option
can be used to disable it. The frame contains various information that may be useful
to the decoder, like the audio duration or encoder delay.

· A legacy ID3v1 tag at the end of the file (disabled by default). It may be enabled
with the "write_id3v1" private option, but as its capabilities are very limited, its
usage is not recommended.

Examples:

Write an mp3 with an ID3v2.3 header and an ID3v1 footer:

ffmpeg -i INPUT -id3v2_version 3 -write_id3v1 1 out.mp3

To attach a picture to an mp3 file select both the audio and the picture stream with
"map":

ffmpeg -i input.mp3 -i cover.png -c copy -map 0 -map 1
-metadata:s:v title="Album cover" -metadata:s:v comment="Cover (Front)" out.mp3

Write a "clean" MP3 without any extra features:

ffmpeg -i input.wav -write_xing 0 -id3v2_version 0 out.mp3

mpegts
MPEG transport stream muxer.

This muxer implements ISO 13818-1 and part of ETSI EN 300 468.

The recognized metadata settings in mpegts muxer are "service_provider" and
"service_name". If they are not set the default for "service_provider" is "FFmpeg" and the
default for "service_name" is "Service01".

Options

The muxer options are:

-mpegts_original_network_id number
Set the original_network_id (default 0x0001). This is unique identifier of a network
in DVB. Its main use is in the unique identification of a service through the path
Original_Network_ID, Transport_Stream_ID.

-mpegts_transport_stream_id number
Set the transport_stream_id (default 0x0001). This identifies a transponder in DVB.

-mpegts_service_id number
Set the service_id (default 0x0001) also known as program in DVB.

-mpegts_service_type number
Set the program service_type (default digital_tv), see below a list of pre defined
values.

-mpegts_pmt_start_pid number
Set the first PID for PMT (default 0x1000, max 0x1f00).

-mpegts_start_pid number
Set the first PID for data packets (default 0x0100, max 0x0f00).

-mpegts_m2ts_mode number
Enable m2ts mode if set to 1. Default value is -1 which disables m2ts mode.

-muxrate number
Set a constant muxrate (default VBR).

-pcr_period numer
Override the default PCR retransmission time (default 20ms), ignored if variable
muxrate is selected.

pat_period number
Maximal time in seconds between PAT/PMT tables.

sdt_period number
Maximal time in seconds between SDT tables.

-pes_payload_size number
Set minimum PES packet payload in bytes.

-mpegts_flags flags
Set flags (see below).

-mpegts_copyts number
Preserve original timestamps, if value is set to 1. Default value is -1, which results
in shifting timestamps so that they start from 0.

-tables_version number
Set PAT, PMT and SDT version (default 0, valid values are from 0 to 31, inclusively).
This option allows updating stream structure so that standard consumer may detect the
change. To do so, reopen output AVFormatContext (in case of API usage) or restart
ffmpeg instance, cyclically changing tables_version value:

ffmpeg -i source1.ts -codec copy -f mpegts -tables_version 0 udp://1.1.1.1:1111
ffmpeg -i source2.ts -codec copy -f mpegts -tables_version 1 udp://1.1.1.1:1111
...
ffmpeg -i source3.ts -codec copy -f mpegts -tables_version 31 udp://1.1.1.1:1111
ffmpeg -i source1.ts -codec copy -f mpegts -tables_version 0 udp://1.1.1.1:1111
ffmpeg -i source2.ts -codec copy -f mpegts -tables_version 1 udp://1.1.1.1:1111
...

Option mpegts_service_type accepts the following values:

hex_value
Any hexdecimal value between 0x01 to 0xff as defined in ETSI 300 468.

digital_tv
Digital TV service.

digital_radio
Digital Radio service.

teletext
Teletext service.

advanced_codec_digital_radio
Advanced Codec Digital Radio service.

mpeg2_digital_hdtv
MPEG2 Digital HDTV service.

advanced_codec_digital_sdtv
Advanced Codec Digital SDTV service.

advanced_codec_digital_hdtv
Advanced Codec Digital HDTV service.

Option mpegts_flags may take a set of such flags:

resend_headers
Reemit PAT/PMT before writing the next packet.

latm
Use LATM packetization for AAC.

pat_pmt_at_frames
Reemit PAT and PMT at each video frame.

Example

ffmpeg -i file.mpg -c copy \
-mpegts_original_network_id 0x1122 \
-mpegts_transport_stream_id 0x3344 \
-mpegts_service_id 0x5566 \
-mpegts_pmt_start_pid 0x1500 \
-mpegts_start_pid 0x150 \
-metadata service_provider="Some provider" \
-metadata service_name="Some Channel" \
-y out.ts

mxf, mxf_d10
MXF muxer.

Options

The muxer options are:

store_user_comments bool
Set if user comments should be stored if available or never. IRT D-10 does not allow
user comments. The default is thus to write them for mxf but not for mxf_d10

null
Null muxer.

This muxer does not generate any output file, it is mainly useful for testing or
benchmarking purposes.

For example to benchmark decoding with ffmpeg you can use the command:

ffmpeg -benchmark -i INPUT -f null out.null

Note that the above command does not read or write the out.null file, but specifying the
output file is required by the ffmpeg syntax.

Alternatively you can write the command as:

ffmpeg -benchmark -i INPUT -f null -

nut
-syncpoints flags
Change the syncpoint usage in nut:

default use the normal low-overhead seeking aids.
none do not use the syncpoints at all, reducing the overhead but making the stream
non-seekable;
Use of this option is not recommended, as the resulting files are very damage
sensitive and seeking is not possible. Also in general the overhead from
syncpoints is negligible. Note, -C<write_index> 0 can be used to disable
all growing data tables, allowing to mux endless streams with limited memory
and without these disadvantages.

timestamped extend the syncpoint with a wallclock field.

The none and timestamped flags are experimental.

-write_index bool
Write index at the end, the default is to write an index.

ffmpeg -i INPUT -f_strict experimental -syncpoints none - | processor

ogg
Ogg container muxer.

-page_duration duration
Preferred page duration, in microseconds. The muxer will attempt to create pages that
are approximately duration microseconds long. This allows the user to compromise
between seek granularity and container overhead. The default is 1 second. A value of 0
will fill all segments, making pages as large as possible. A value of 1 will
effectively use 1 packet-per-page in most situations, giving a small seek granularity
at the cost of additional container overhead.

-serial_offset value
Serial value from which to set the streams serial number. Setting it to different and
sufficiently large values ensures that the produced ogg files can be safely chained.

segment, stream_segment, ssegment
Basic stream segmenter.

This muxer outputs streams to a number of separate files of nearly fixed duration. Output
filename pattern can be set in a fashion similar to image2, or by using a "strftime"
template if the strftime option is enabled.

"stream_segment" is a variant of the muxer used to write to streaming output formats, i.e.
which do not require global headers, and is recommended for outputting e.g. to MPEG
transport stream segments. "ssegment" is a shorter alias for "stream_segment".

Every segment starts with a keyframe of the selected reference stream, which is set
through the reference_stream option.

Note that if you want accurate splitting for a video file, you need to make the input key
frames correspond to the exact splitting times expected by the segmenter, or the segment
muxer will start the new segment with the key frame found next after the specified start
time.

The segment muxer works best with a single constant frame rate video.

Optionally it can generate a list of the created segments, by setting the option
segment_list. The list type is specified by the segment_list_type option. The entry
filenames in the segment list are set by default to the basename of the corresponding
segment files.

See also the hls muxer, which provides a more specific implementation for HLS
segmentation.

Options

The segment muxer supports the following options:

reference_stream specifier
Set the reference stream, as specified by the string specifier. If specifier is set
to "auto", the reference is chosen automatically. Otherwise it must be a stream
specifier (see the ``Stream specifiers'' chapter in the ffmpeg manual) which specifies
the reference stream. The default value is "auto".

segment_format format
Override the inner container format, by default it is guessed by the filename
extension.

segment_format_options options_list
Set output format options using a :-separated list of key=value parameters. Values
containing the ":" special character must be escaped.

segment_list name
Generate also a listfile named name. If not specified no listfile is generated.

segment_list_flags flags
Set flags affecting the segment list generation.

It currently supports the following flags:

cache
Allow caching (only affects M3U8 list files).

live
Allow live-friendly file generation.

segment_list_size size
Update the list file so that it contains at most size segments. If 0 the list file
will contain all the segments. Default value is 0.

segment_list_entry_prefix prefix
Prepend prefix to each entry. Useful to generate absolute paths. By default no prefix
is applied.

segment_list_type type
Select the listing format.

The following values are recognized:

flat
Generate a flat list for the created segments, one segment per line.

csv, ext
Generate a list for the created segments, one segment per line, each line matching
the format (comma-separated values):

<segment_filename>,<segment_start_time>,<segment_end_time>

segment_filename is the name of the output file generated by the muxer according
to the provided pattern. CSV escaping (according to RFC4180) is applied if
required.

segment_start_time and segment_end_time specify the segment start and end time
expressed in seconds.

A list file with the suffix ".csv" or ".ext" will auto-select this format.

ext is deprecated in favor or csv.

ffconcat
Generate an ffconcat file for the created segments. The resulting file can be read
using the FFmpeg concat demuxer.

A list file with the suffix ".ffcat" or ".ffconcat" will auto-select this format.

m3u8
Generate an extended M3U8 file, version 3, compliant with
<http://tools.ietf.org/id/draft-pantos-http-live-streaming>.

A list file with the suffix ".m3u8" will auto-select this format.

If not specified the type is guessed from the list file name suffix.

segment_time time
Set segment duration to time, the value must be a duration specification. Default
value is "2". See also the segment_times option.

Note that splitting may not be accurate, unless you force the reference stream key-
frames at the given time. See the introductory notice and the examples below.

segment_atclocktime 1|0
If set to "1" split at regular clock time intervals starting from 00:00 o'clock. The
time value specified in segment_time is used for setting the length of the splitting
interval.

For example with segment_time set to "900" this makes it possible to create files at
12:00 o'clock, 12:15, 12:30, etc.

Default value is "0".

segment_time_delta delta
Specify the accuracy time when selecting the start time for a segment, expressed as a
duration specification. Default value is "0".

When delta is specified a key-frame will start a new segment if its PTS satisfies the
relation:

PTS >= start_time - time_delta

This option is useful when splitting video content, which is always split at GOP
boundaries, in case a key frame is found just before the specified split time.

In particular may be used in combination with the ffmpeg option force_key_frames. The
key frame times specified by force_key_frames may not be set accurately because of
rounding issues, with the consequence that a key frame time may result set just before
the specified time. For constant frame rate videos a value of 1/(2*frame_rate) should
address the worst case mismatch between the specified time and the time set by
force_key_frames.

segment_times times
Specify a list of split points. times contains a list of comma separated duration
specifications, in increasing order. See also the segment_time option.

segment_frames frames
Specify a list of split video frame numbers. frames contains a list of comma separated
integer numbers, in increasing order.

This option specifies to start a new segment whenever a reference stream key frame is
found and the sequential number (starting from 0) of the frame is greater or equal to
the next value in the list.

segment_wrap limit
Wrap around segment index once it reaches limit.

segment_start_number number
Set the sequence number of the first segment. Defaults to 0.

strftime 1|0
Use the "strftime" function to define the name of the new segments to write. If this
is selected, the output segment name must contain a "strftime" function template.
Default value is 0.

break_non_keyframes 1|0
If enabled, allow segments to start on frames other than keyframes. This improves
behavior on some players when the time between keyframes is inconsistent, but may make
things worse on others, and can cause some oddities during seeking. Defaults to 0.

reset_timestamps 1|0
Reset timestamps at the begin of each segment, so that each segment will start with
near-zero timestamps. It is meant to ease the playback of the generated segments. May
not work with some combinations of muxers/codecs. It is set to 0 by default.

initial_offset offset
Specify timestamp offset to apply to the output packet timestamps. The argument must
be a time duration specification, and defaults to 0.

Examples

· Remux the content of file in.mkv to a list of segments out-000.nut, out-001.nut, etc.,
and write the list of generated segments to out.list:

ffmpeg -i in.mkv -codec copy -map 0 -f segment -segment_list out.list out%03d.nut

· Segment input and set output format options for the output segments:

ffmpeg -i in.mkv -f segment -segment_time 10 -segment_format_options movflags=+faststart out%03d.mp4

· Segment the input file according to the split points specified by the segment_times
option:

ffmpeg -i in.mkv -codec copy -map 0 -f segment -segment_list out.csv -segment_times 1,2,3,5,8,13,21 out%03d.nut

· Use the ffmpeg force_key_frames option to force key frames in the input at the
specified location, together with the segment option segment_time_delta to account for
possible roundings operated when setting key frame times.

ffmpeg -i in.mkv -force_key_frames 1,2,3,5,8,13,21 -codec:v mpeg4 -codec:a pcm_s16le -map 0 \
-f segment -segment_list out.csv -segment_times 1,2,3,5,8,13,21 -segment_time_delta 0.05 out%03d.nut

In order to force key frames on the input file, transcoding is required.

· Segment the input file by splitting the input file according to the frame numbers
sequence specified with the segment_frames option:

ffmpeg -i in.mkv -codec copy -map 0 -f segment -segment_list out.csv -segment_frames 100,200,300,500,800 out%03d.nut

· Convert the in.mkv to TS segments using the "libx264" and "libfaac" encoders:

ffmpeg -i in.mkv -map 0 -codec:v libx264 -codec:a libfaac -f ssegment -segment_list out.list out%03d.ts

· Segment the input file, and create an M3U8 live playlist (can be used as live HLS
source):

ffmpeg -re -i in.mkv -codec copy -map 0 -f segment -segment_list playlist.m3u8 \
-segment_list_flags +live -segment_time 10 out%03d.mkv

smoothstreaming
Smooth Streaming muxer generates a set of files (Manifest, chunks) suitable for serving
with conventional web server.

window_size
Specify the number of fragments kept in the manifest. Default 0 (keep all).

extra_window_size
Specify the number of fragments kept outside of the manifest before removing from
disk. Default 5.

lookahead_count
Specify the number of lookahead fragments. Default 2.

min_frag_duration
Specify the minimum fragment duration (in microseconds). Default 5000000.

remove_at_exit
Specify whether to remove all fragments when finished. Default 0 (do not remove).

tee
The tee muxer can be used to write the same data to several files or any other kind of
muxer. It can be used, for example, to both stream a video to the network and save it to
disk at the same time.

It is different from specifying several outputs to the ffmpeg command-line tool because
the audio and video data will be encoded only once with the tee muxer; encoding can be a
very expensive process. It is not useful when using the libavformat API directly because
it is then possible to feed the same packets to several muxers directly.

The slave outputs are specified in the file name given to the muxer, separated by '|'. If
any of the slave name contains the '|' separator, leading or trailing spaces or any
special character, it must be escaped (see the "Quoting and escaping" section in the
ffmpeg-utils(1) manual).

Muxer options can be specified for each slave by prepending them as a list of key=value
pairs separated by ':', between square brackets. If the options values contain a special
character or the ':' separator, they must be escaped; note that this is a second level
escaping.

The following special options are also recognized:

f Specify the format name. Useful if it cannot be guessed from the output name suffix.

bsfs[/spec]
Specify a list of bitstream filters to apply to the specified output.

It is possible to specify to which streams a given bitstream filter applies, by
appending a stream specifier to the option separated by "/". spec must be a stream
specifier (see Format stream specifiers). If the stream specifier is not specified,
the bitstream filters will be applied to all streams in the output.

Several bitstream filters can be specified, separated by ",".

select
Select the streams that should be mapped to the slave output, specified by a stream
specifier. If not specified, this defaults to all the input streams.

Examples

· Encode something and both archive it in a WebM file and stream it as MPEG-TS over UDP
(the streams need to be explicitly mapped):

ffmpeg -i ... -c:v libx264 -c:a mp2 -f tee -map 0:v -map 0:a
"archive-20121107.mkv|[f=mpegts]udp://10.0.1.255:1234/"

· Use ffmpeg to encode the input, and send the output to three different destinations.
The "dump_extra" bitstream filter is used to add extradata information to all the
output video keyframes packets, as requested by the MPEG-TS format. The select option
is applied to out.aac in order to make it contain only audio packets.

ffmpeg -i ... -map 0 -flags +global_header -c:v libx264 -c:a aac -strict experimental
-f tee "[bsfs/v=dump_extra]out.ts|[movflags=+faststart]out.mp4|[select=a]out.aac"

· As below, but select only stream "a:1" for the audio output. Note that a second level
escaping must be performed, as ":" is a special character used to separate options.

ffmpeg -i ... -map 0 -flags +global_header -c:v libx264 -c:a aac -strict experimental
-f tee "[bsfs/v=dump_extra]out.ts|[movflags=+faststart]out.mp4|[select=\'a:1\']out.aac"

Note: some codecs may need different options depending on the output format; the auto-
detection of this can not work with the tee muxer. The main example is the global_header
flag.

webm_dash_manifest
WebM DASH Manifest muxer.

This muxer implements the WebM DASH Manifest specification to generate the DASH manifest
XML. It also supports manifest generation for DASH live streams.

For more information see:

· WebM DASH Specification:
<https://sites.google.com/a/webmproject.org/wiki/adaptive-streaming/webm-dash-specification>

· ISO DASH Specification:
<http://standards.iso.org/ittf/PubliclyAvailableStandards/c065274_ISO_IEC_23009-1_2014.zip>

Options

This muxer supports the following options:

adaptation_sets
This option has the following syntax: "id=x,streams=a,b,c id=y,streams=d,e" where x
and y are the unique identifiers of the adaptation sets and a,b,c,d and e are the
indices of the corresponding audio and video streams. Any number of adaptation sets
can be added using this option.

live
Set this to 1 to create a live stream DASH Manifest. Default: 0.

chunk_start_index
Start index of the first chunk. This will go in the startNumber attribute of the
SegmentTemplate element in the manifest. Default: 0.

chunk_duration_ms
Duration of each chunk in milliseconds. This will go in the duration attribute of the
SegmentTemplate element in the manifest. Default: 1000.

utc_timing_url
URL of the page that will return the UTC timestamp in ISO format. This will go in the
value attribute of the UTCTiming element in the manifest. Default: None.

time_shift_buffer_depth
Smallest time (in seconds) shifting buffer for which any Representation is guaranteed
to be available. This will go in the timeShiftBufferDepth attribute of the MPD
element. Default: 60.

minimum_update_period
Minimum update period (in seconds) of the manifest. This will go in the
minimumUpdatePeriod attribute of the MPD element. Default: 0.

Example

ffmpeg -f webm_dash_manifest -i video1.webm \
-f webm_dash_manifest -i video2.webm \
-f webm_dash_manifest -i audio1.webm \
-f webm_dash_manifest -i audio2.webm \
-map 0 -map 1 -map 2 -map 3 \
-c copy \
-f webm_dash_manifest \
-adaptation_sets "id=0,streams=0,1 id=1,streams=2,3" \
manifest.xml

webm_chunk
WebM Live Chunk Muxer.

This muxer writes out WebM headers and chunks as separate files which can be consumed by
clients that support WebM Live streams via DASH.

Options

This muxer supports the following options:

chunk_start_index
Index of the first chunk (defaults to 0).

header
Filename of the header where the initialization data will be written.

audio_chunk_duration
Duration of each audio chunk in milliseconds (defaults to 5000).

Example

ffmpeg -f v4l2 -i /dev/video0 \
-f alsa -i hw:0 \
-map 0:0 \
-c:v libvpx-vp9 \
-s 640x360 -keyint_min 30 -g 30 \
-f webm_chunk \
-header webm_live_video_360.hdr \
-chunk_start_index 1 \
webm_live_video_360_%d.chk \
-map 1:0 \
-c:a libvorbis \
-b:a 128k \
-f webm_chunk \
-header webm_live_audio_128.hdr \
-chunk_start_index 1 \
-audio_chunk_duration 1000 \
webm_live_audio_128_%d.chk

METADATA


FFmpeg is able to dump metadata from media files into a simple UTF-8-encoded INI-like text
file and then load it back using the metadata muxer/demuxer.

The file format is as follows:

1. A file consists of a header and a number of metadata tags divided into sections, each
on its own line.

2. The header is a ;FFMETADATA string, followed by a version number (now 1).

3. Metadata tags are of the form key=value

4. Immediately after header follows global metadata

5. After global metadata there may be sections with per-stream/per-chapter metadata.

6. A section starts with the section name in uppercase (i.e. STREAM or CHAPTER) in
brackets ([, ]) and ends with next section or end of file.

7. At the beginning of a chapter section there may be an optional timebase to be used for
start/end values. It must be in form TIMEBASE=num/den, where num and den are integers.
If the timebase is missing then start/end times are assumed to be in milliseconds.

Next a chapter section must contain chapter start and end times in form START=num,
END=num, where num is a positive integer.

8. Empty lines and lines starting with ; or # are ignored.

9. Metadata keys or values containing special characters (=, ;, #, \ and a newline) must
be escaped with a backslash \.

10. Note that whitespace in metadata (e.g. foo = bar) is considered to be a part of the
tag (in the example above key is foo , value is
bar).

A ffmetadata file might look like this:

;FFMETADATA1
title=bike\\shed
;this is a comment
artist=FFmpeg troll team

[CHAPTER]
TIMEBASE=1/1000
START=0
#chapter ends at 0:01:00
END=60000
title=chapter \#1
[STREAM]
title=multi\
line

By using the ffmetadata muxer and demuxer it is possible to extract metadata from an input
file to an ffmetadata file, and then transcode the file into an output file with the
edited ffmetadata file.

Extracting an ffmetadata file with ffmpeg goes as follows:

ffmpeg -i INPUT -f ffmetadata FFMETADATAFILE

Reinserting edited metadata information from the FFMETADATAFILE file can be done as:

ffmpeg -i INPUT -i FFMETADATAFILE -map_metadata 1 -codec copy OUTPUT

Use ffmpeg-formats online using onworks.net services


Ad


Ad