Angielskifrancuskihiszpański

Ad


Ulubiona usługa OnWorks

mia-2dmyomilles - Online w chmurze

Uruchom mia-2dmyomilles w bezpłatnym dostawcy hostingu OnWorks w systemie Ubuntu Online, Fedora Online, emulatorze online systemu Windows lub emulatorze online systemu MAC OS

To jest polecenie mia-2dmyomilles, które można uruchomić w bezpłatnym dostawcy hostingu OnWorks przy użyciu jednej z naszych wielu bezpłatnych stacji roboczych online, takich jak Ubuntu Online, Fedora Online, emulator online systemu Windows lub emulator online systemu MAC OS

PROGRAM:

IMIĘ


mia-2dmyomilles - Uruchom rejestrację serii obrazów 2D.

STRESZCZENIE


mia-2dmyomilles -i -o [opcje]

OPIS


mia-2dmyomilles Ten program służy do uruchamiania zmodyfikowanej wersji opartej na ICA
podejście rejestracyjne opisane w Milles et al. „W pełni zautomatyzowana korekcja ruchu w
Sekwencje obrazu MR perfuzji mięśnia sercowego pierwszego przejścia, Trans. Med. Obrazowanie., 27(11)
1611-1621, 2008. Zmiany obejmują wydobycie ruchu quasi-okresowego w swobodnym
rewelacyjnie pozyskiwane zbiory danych i możliwość zamiast tego prowadzenia rejestracji afinicznej lub sztywnej
wyłącznie optymalizacji tłumaczeń.

OPCJE


Plik-IO
-i --in-file=(wejście, wymagane); strunowy
wprowadź zestaw danych perfuzji

-o --out-file=(wyjście, wymagane); strunowy
wyjściowy zestaw danych perfuzji

-r --zarejestrowany=
baza nazw plików dla zarejestrowanych plików

--zapisz-referencje=
zapisz syntetyczne obrazy referencyjne w tej bazie plików

--zapisz-przycięty=
zapisz przycięty zestaw obrazów w tym pliku

--zapisz-funkcję=
zapisz obrazy funkcji wynikające z ICA i niektóre obrazy pośrednie
używany do segmentacji RV-LV z podanej bazy nazw plików do plików PNG.
Zapisz także współczynniki początkowego najlepszego i końcowego mieszania IC
matryca.

Pomoc & Informacia
-V --verbose=ostrzeżenie
gadatliwość wyjścia, komunikaty drukowane na danym poziomie i wyższych priorytetach.
Obsługiwane priorytety zaczynające się od najniższego poziomu to:
Informacje ‐ Komunikaty niskiego poziomu
wyśledzić ‐ Śledzenie wywołań funkcji
nie ‐ Zgłoś niepowodzenia testu
ostrzeżenie ‐ Ostrzeżenia
błąd ‐ Zgłoś błędy
debug ‐ Wyjście debugowania
wiadomość ‐ Normalne wiadomości
fatalny ‐ Zgłoś tylko błędy krytyczne

--prawa autorskie
drukuj informacje o prawach autorskich

-h --pomoc
wydrukuj tę pomoc

-? --stosowanie
wydrukuj krótką pomoc

--wersja
wydrukuj numer wersji i wyjdź

ICA
-C --komponenty=0
Komponenty ICA 0 = automatyczne oszacowanie Komponenty ICA 0 = automatyczne
kosztu projektu

--normalizować
znormalizowane układy scalone

--no-znacznik
nie usuwaj średniej z krzywych mieszania

-g -zgadnij
użyj wstępnego przypuszczenia dotyczącego perfuzji mięśnia sercowego

-s --segscale=1.4
segmentuj i skaluj pole kadrowania wokół segmentu LV (0 = brak segmentacji) i
skaluj pole przycinania wokół LV (0 = brak segmentacji)

-k --pomiń=0
pomiń obrazy na początku serii, ponieważ są to inne
modalności pomijaj obrazy na początku serii, tak jak w przypadku innych
modalności

-m --max-ica-iter=400
maksymalna liczba iteracji w ICAmaksymalna liczba iteracji w ICA

-E --segmethod=funkcje
Metoda segmentacji
szczyt delta – różnica obrazów wzmocnienia pików
cechy – obrazy charakterystyczne
funkcja delta - różnica obrazów cech

Przetwarzanie
--wątki=-1
Maksymalna liczba wątków do wykorzystania do przetwarzania, ta liczba powinna być mniejsza
lub równa liczbie rdzeni procesora logicznego w maszynie. (-1:
automatyczne oszacowanie). Maksymalna liczba wątków do wykorzystania do przetwarzania, to
liczba powinna być mniejsza lub równa liczbie rdzeni procesora logicznego w
maszyna. (-1: estymacja automatyczna).

Rejestracja
-c --koszt=ssd
kryterium rejestracji

-O --optimizer=gsl:opt=simpleks, krok=1.0
Optymalizator używany do minimalizacji Optymalizator używany do minimalizacji For
obsługiwane wtyczki patrz PLUGINS:minimizer/singlecost

-f --transForm=sztywny
typ przekształcenia typ przekształcenia Obsługiwane wtyczki patrz
WTYCZKI:obraz 2d/przekształcenie

-l --mg-poziomów=3
poziomy o wielu rozdzielczościach poziomy o wielu rozdzielczościach

-R --referencja=-1
Globalne odniesienie, do którego powinien być wyrównany cały obraz. Jeśli jest ustawiony na wartość nieujemną
wartość, obrazy zostaną dopasowane do tych odniesień i przyciętego wyniku
data obrazu zostanie wstrzyknięta do oryginalnych obrazów. Jeśli chcesz, wyjdź o -1
nie obchodzi mnie to. W tym przypadku wszystkie obrazy zostaną zarejestrowane w średniej pozycji
ruchGlobalne odniesienie, do którego powinien być dostosowany cały obraz. Jeśli ustawione na
wartość nieujemną, obrazy zostaną dopasowane do tych odniesień, a
data przyciętego obrazu wyjściowego zostanie wstrzyknięta do oryginalnych obrazów. Wyjechać
przy -1, jeśli cię to nie obchodzi. W tym przypadku wszystkie obrazy zostaną zarejestrowane w pliku a
średnia pozycja ruchu

-P --przechodzi=2
karty rejestracyjnekarty rejestracyjne

WTYCZKI: 1d/splajnbc


lustro Warunki brzegowe interpolacji splajnu, które odzwierciedlają granicę

(bez parametrów)

powtarzać Warunki brzegowe interpolacji splajnu, które powtarzają wartość na granicy

(bez parametrów)

zero Warunki brzegowe interpolacji splajnu, które zakładają zero dla wartości na zewnątrz

(bez parametrów)

WTYCZKI: 1d / splinekernel


bsplinia Tworzenie jądra B-spline, obsługiwane parametry to:

d = 3; int w [0, 5]
Stopień splajnu.

mamusie Tworzenie jądra OMoms-spline, obsługiwane parametry to:

d = 3; int w [3, 3]
Stopień splajnu.

WTYCZKI: obraz 2d/transformacja


afiniczny Transformacja afiniczna (sześć stopni swobody). Obsługiwane parametry to:

bezgraniczna = lustro; fabryka
warunki brzegowe interpolacji obrazu. Obsługiwane wtyczki patrz
WTYCZKI: 1d/splinebc

imgkernel = [bspline:d=3]; fabryka
jądro interpolatora obrazu. Obsługiwane wtyczki patrz
WTYCZKI: 1 d / splinekernel

sztywny Transformacje sztywne (tj. obrót i translacja, trzy stopnie
swobody), obsługiwane parametry to:

bezgraniczna = lustro; fabryka
warunki brzegowe interpolacji obrazu. Obsługiwane wtyczki patrz
WTYCZKI: 1d/splinebc

imgkernel = [bspline:d=3]; fabryka
jądro interpolatora obrazu. Obsługiwane wtyczki patrz
WTYCZKI: 1 d / splinekernel

centrum zgnilizny = [[0,0]]; 2dfwektor
Względny środek obrotu, tj. <0.5,0.5> odpowiada środkowi
prostokąt wsparcia.

rotacja Transformacje rotacyjne (tj. obrót wokół danego środka, jeden stopień
swobody), obsługiwane parametry to:

bezgraniczna = lustro; fabryka
warunki brzegowe interpolacji obrazu. Obsługiwane wtyczki patrz
WTYCZKI: 1d/splinebc

imgkernel = [bspline:d=3]; fabryka
jądro interpolatora obrazu. Obsługiwane wtyczki patrz
WTYCZKI: 1 d / splinekernel

centrum zgnilizny = [[0,0]]; 2dfwektor
Względny środek obrotu, tj. <0.5,0.5> odpowiada środkowi
prostokąt wsparcia.

klin Przekształcenie swobodne, które można opisać zbiorem współczynników B-splajn
i bazowego jądra B-spline., obsługiwane parametry to:

anizorat = [[0,0]]; 2dfwektor
współczynnik współczynnika anizotropowego w pikselach, wartości niedodatnie będą
nadpisany przez wartość „rate” ..

bezgraniczna = lustro; fabryka
warunki brzegowe interpolacji obrazu. Obsługiwane wtyczki patrz
WTYCZKI: 1d/splinebc

imgkernel = [bspline:d=3]; fabryka
jądro interpolatora obrazu. Obsługiwane wtyczki patrz
WTYCZKI: 1 d / splinekernel

jądro = [bspline:d=3]; fabryka
transformacja spline kernel.. Obsługiwane wtyczki patrz
WTYCZKI: 1 d / splinekernel

kara = ; fabryka
Termin kary przekształcenia. Obsługiwane wtyczki patrz
WTYCZKI:2dtransform/splline kara

stawka = 10; pływać w [1, inf)
współczynnik izotropowy w pikselach.

tłumaczyć Tylko translacja (dwa stopnie swobody), obsługiwane parametry to:

bezgraniczna = lustro; fabryka
warunki brzegowe interpolacji obrazu. Obsługiwane wtyczki patrz
WTYCZKI: 1d/splinebc

imgkernel = [bspline:d=3]; fabryka
jądro interpolatora obrazu. Obsługiwane wtyczki patrz
WTYCZKI: 1 d / splinekernel

vf Ta wtyczka implementuje transformację, która definiuje tłumaczenie dla każdego
punkt siatki określający dziedzinę transformacji., obsługiwane
parametry to:

bezgraniczna = lustro; fabryka
warunki brzegowe interpolacji obrazu. Obsługiwane wtyczki patrz
WTYCZKI: 1d/splinebc

imgkernel = [bspline:d=3]; fabryka
jądro interpolatora obrazu. Obsługiwane wtyczki patrz
WTYCZKI: 1 d / splinekernel

WTYCZKI: 2dtransform/splajna kara


divcurl kara divcurl na transformację, obsługiwane parametry to:

curl = 1; pływać w [0, inf)
waga karna na curl.

div = 1; pływać w [0, inf)
waga kary za rozbieżność.

norma = 0; głupota
Ustaw na 1, jeśli kara powinna być znormalizowana w odniesieniu do obrazu
rozmiar.

waga = 1; pływać w (0, inf)
waga karnej energii.

WTYCZKI: minimalizator/pojedynczy koszt


gdaś Opadanie gradientowe z automatyczną korektą wielkości kroku. Obsługiwane parametry to:

ftolr = 0; podwójne w [0, inf)
Zatrzymaj się, jeśli względna zmiana kryterium jest poniżej..

maksymalny krok = 2; podwójne (0, inf)
Maksymalny bezwzględny rozmiar kroku.

maksiter = 200; uint w [1, inf)
Kryterium zatrzymania: maksymalna liczba iteracji.

min-krok = 0.1; podwójne (0, inf)
Minimalny bezwzględny rozmiar kroku.

xtola = 0.01; podwójne w [0, inf)
Zatrzymaj się, jeśli inf-norm zmiany zastosowanej do x jest poniżej tej wartości.

gdkw Opadanie gradientowe z estymacją kroku kwadratowego, obsługiwane parametry to:

ftolr = 0; podwójne w [0, inf)
Zatrzymaj się, jeśli względna zmiana kryterium jest poniżej..

gtola = 0; podwójne w [0, inf)
Zatrzymaj się, jeśli inf-norm gradientu jest poniżej tej wartości..

maksiter = 100; uint w [1, inf)
Kryterium zatrzymania: maksymalna liczba iteracji.

skala = 2; podwójne (1, inf)
Naprawiono skalowanie rozmiaru kroku powrotnego.

krok = 0.1; podwójne (0, inf)
Początkowy rozmiar kroku.

xtola = 0; podwójne w [0, inf)
Zatrzymaj się, jeśli inf-norm x-update jest poniżej tej wartości.

gsl Wtyczka optymalizatora oparta na multimin optymalizatorach z Biblioteki Naukowej GNU
(GSL) https://www.gnu.org/software/gsl/, obsługiwane parametry to:

EPS = 0.01; podwójne (0, inf)
optymalizatory oparte na gradiencie: zatrzymaj się, gdy |grad| < eps, simplex: zatrzymaj się, gdy
rozmiar simplex < eps..

powtarzać = 100; uint w [1, inf)
maksymalna liczba iteracji.

optować = gd; dyktować
Konkretny optymalizator do użycia. Obsługiwane wartości to:
bfgs - Broyden-Fletcher-Goldfarb-Shann
bfgs2 ‐ Broyden-Fletcher-Goldfarb-Shann (najwydajniejsza wersja)
cg-fr ‐ sprzężony algorytm gradientu Flechera-Reevesa
gd ‐ Zejście gradientowe.
simplex ‐ Algorytm simpleks Neldera i Meada
cg-pr - Algorytm gradientu sprzężonego Polaka-Ribiere'a

krok = 0.001; podwójne (0, inf)
początkowy rozmiar kroku.

tol = 0.1; podwójne (0, inf)
jakiś parametr tolerancji.

nlopt Algorytmy minimalizatora wykorzystujące bibliotekę NLOPT, opisujące
optymalizatory zobacz 'http://ab-
initio.mit.edu/wiki/index.php/NLopt_Algorithms', obsługiwane parametry to:

ftola = 0; podwójne w [0, inf)
Kryterium zatrzymania: bezwzględna zmiana wartości celu jest poniżej
tę wartość.

ftolr = 0; podwójne w [0, inf)
Kryterium zatrzymania: względna zmiana wartości celu jest poniżej
tę wartość.

wyższy = inf; podwójnie
Górna granica (jednakowa dla wszystkich parametrów).

lokalna opcja = brak; dyktować
lokalny algorytm minimalizacji, który może być wymagany dla głównego
algorytm minimalizacji. Obsługiwane wartości to:
gn-orig-direct-l ‐ Dzielenie prostokątów (oryginalna realizacja,
stronniczy lokalnie)
gn-direct-l-noskal ‐ Dzielenie prostokątów (nieskalowane, lokalnie stronnicze)
gn-isres ‐ Ulepszona strategia ewolucji rankingu stochastycznego
stary-tnewton ‐ Obcięty Newton
gn-direct-l-rand ‐ Dzielenie prostokątów (lokalnie stronnicze, losowe)
In-newuoa ‐ Bezpochodna nieograniczona optymalizacja metodą iteracyjną
Skonstruowane przybliżenie kwadratowe
gn-direct-l-rand-noscale ‐ Dzielenie prostokątów (nieskalowane, lokalnie)
stronniczy, randomizowany)
gn-orig-direct ‐ Dzielenie prostokątów (oryginalna implementacja)
ld-tnewton-warunek wstępny ‐ Wstępnie kondycjonowany Newton ścięty
ld-tnewton-restart ‐ Obcięty Newton z ponownym uruchomieniem przy najbardziej stromym opadaniu
gn-bezpośredni ‐ Dzielenie prostokątów
ln-eldermead ‐ Algorytm simpleks Neldera-Meada
In-cobyla ‐ Ograniczona optymalizacja przez przybliżenie liniowe
gn-crs2-lm ‐ Kontrolowane wyszukiwanie losowe z lokalną mutacją
ld-var2 ‐ Przesunięta zmienna metryczna o ograniczonej pamięci, ranga 2
ld-var1 ‐ Przesunięta zmienna metryczna o ograniczonej pamięci, ranga 1
stary-mma ‐ Metoda przesuwania asymptot
ld-lbfgs-nocedal - Nic
ld-lbfgs ‐ Niskomagazynowe BFGS
gn-direct-l ‐ Dzielenie prostokątów (strona lokalna)
Żaden ‐ nie podawaj algorytmu
in-bobyqa ‐ Bezpochodna optymalizacja z ograniczeniami
ln-sbplx ‐ Subplex wariant Nelder-Mead
In-newuoa-bound ‐ Bez pochodnej Optymalizacja z ograniczeniami związanymi przez
Iteracyjnie skonstruowane przybliżenie kwadratowe
w praktyce ‐ Bezgradientowa optymalizacja lokalna za pomocą osi głównej
Metoda wykonania
gn-direct-nocal ‐ Dzielenie prostokątów (nieskalowane)
ld-tnewton-precond-restart ‐ Wstępnie kondycjonowany Newton ścięty z
ponowne uruchomienie przy najbardziej stromym zjeździe

niższy = -inf; podwójnie
Dolna granica (równa dla wszystkich parametrów).

maksiter = 100; int w [1, inf)
Kryterium zatrzymania: maksymalna liczba iteracji.

optować = ld-lbfgs; dyktować
główny algorytm minimalizacji. Obsługiwane wartości to:
gn-orig-direct-l ‐ Dzielenie prostokątów (oryginalna realizacja,
stronniczy lokalnie)
g-mlsl-lds ‐ Wielopoziomowy pojedynczy mechanizm łączący (sekwencja o małej rozbieżności,
wymagają lokalnej optymalizacji gradientu i granic)
gn-direct-l-noskal ‐ Dzielenie prostokątów (nieskalowane, lokalnie stronnicze)
gn-isres ‐ Ulepszona strategia ewolucji rankingu stochastycznego
stary-tnewton ‐ Obcięty Newton
gn-direct-l-rand ‐ Dzielenie prostokątów (lokalnie stronnicze, losowe)
In-newuoa ‐ Bezpochodna nieograniczona optymalizacja metodą iteracyjną
Skonstruowane przybliżenie kwadratowe
gn-direct-l-rand-noscale ‐ Dzielenie prostokątów (nieskalowane, lokalnie)
stronniczy, randomizowany)
gn-orig-direct ‐ Dzielenie prostokątów (oryginalna implementacja)
ld-tnewton-warunek wstępny ‐ Wstępnie kondycjonowany Newton ścięty
ld-tnewton-restart ‐ Obcięty Newton z ponownym uruchomieniem przy najbardziej stromym opadaniu
gn-bezpośredni ‐ Dzielenie prostokątów
auglag-równ ‐ Rozszerzony algorytm Lagrange'a z ograniczeniami równości
tylko
ln-eldermead ‐ Algorytm simpleks Neldera-Meada
In-cobyla ‐ Ograniczona optymalizacja przez przybliżenie liniowe
gn-crs2-lm ‐ Kontrolowane wyszukiwanie losowe z lokalną mutacją
ld-var2 ‐ Przesunięta zmienna metryczna o ograniczonej pamięci, ranga 2
ld-var1 ‐ Przesunięta zmienna metryczna o ograniczonej pamięci, ranga 1
stary-mma ‐ Metoda przesuwania asymptot
ld-lbfgs-nocedal - Nic
g-mlsl ‐ Wielopoziomowy pojedynczy łącznik (wymaga lokalnej optymalizacji i
miedza)
ld-lbfgs ‐ Niskomagazynowe BFGS
gn-direct-l ‐ Dzielenie prostokątów (strona lokalna)
in-bobyqa ‐ Bezpochodna optymalizacja z ograniczeniami
ln-sbplx ‐ Subplex wariant Nelder-Mead
In-newuoa-bound ‐ Bez pochodnej Optymalizacja z ograniczeniami związanymi przez
Iteracyjnie skonstruowane przybliżenie kwadratowe
Auglag ‐ Rozszerzony algorytm Lagrange'a
w praktyce ‐ Bezgradientowa optymalizacja lokalna za pomocą osi głównej
Metoda wykonania
gn-direct-nocal ‐ Dzielenie prostokątów (nieskalowane)
ld-tnewton-precond-restart ‐ Wstępnie kondycjonowany Newton ścięty z
ponowne uruchomienie przy najbardziej stromym zjeździe
ld-slsqp ‐ Sekwencyjne programowanie kwadratów metodą najmniejszych kwadratów

krok = 0; podwójne w [0, inf)
Początkowa wielkość kroku dla metod bezgradientowych.

Zatrzymaj się = -inf; podwójnie
Kryterium zatrzymania: wartość funkcji spada poniżej tej wartości.

xtola = 0; podwójne w [0, inf)
Kryterium zatrzymania: bezwzględna zmiana wszystkich wartości x jest poniżej tego
wartość.

xtolr = 0; podwójne w [0, inf)
Kryterium zatrzymania: względna zmiana wszystkich wartości x jest poniżej tego
wartość.

PRZYKŁAD


Zarejestruj serię perfuzji podaną w „segment.set”, korzystając z automatycznego oszacowania ICA.
Pomiń dwa obrazy na początku i w przeciwnym razie użyj parametrów domyślnych. Przechowuj
skutkować powstaniem „registered.set”.

mia-2dmyomilles -i segment.set -o zarejestrowany.set -k 2

Autorski)


Gerta Wollnego

PRAWA AUTORSKIE


To oprogramowanie jest objęte prawami autorskimi (c) 1999‐2015 Lipsk, Niemcy i Madryt, Hiszpania. Nadchodzi
bez ABSOLUTNIE ŻADNEJ GWARANCJI i możesz ją redystrybuować zgodnie z warunkami GNU
OGÓLNA LICENCJA PUBLICZNA W wersji 3 (lub nowszej). Aby uzyskać więcej informacji, uruchom program za pomocą
opcja '--prawa autorskie'.

Korzystaj z mia-2dmyomilles online, korzystając z usług onworks.net


Darmowe serwery i stacje robocze

Pobierz aplikacje Windows i Linux

  • 1
    HAUST
    HAUST
    SWIG to narzędzie do tworzenia oprogramowania
    która łączy programy napisane w C i
    C++ z różnymi wysokopoziomowymi
    języki programowania. SWIG jest używany z
    różne...
    Pobierz SWIG
  • 2
    Motyw WooCommerce Nextjs React
    Motyw WooCommerce Nextjs React
    Motyw React WooCommerce, zbudowany z
    Następny JS, Webpack, Babel, Node i
    Express, używając GraphQL i Apollo
    Klient. Sklep WooCommerce w React(
    zawiera: Produkty...
    Pobierz motyw WooCommerce Nextjs React
  • 3
    archlabs_repo
    archlabs_repo
    Repozytorium pakietów dla ArchLabs To jest plik
    aplikacja, którą można również pobrać
    od
    https://sourceforge.net/projects/archlabs-repo/.
    Został on hostowany w OnWorks w...
    Pobierz archlabs_repo
  • 4
    Projekt Zefir
    Projekt Zefir
    Projekt Zephyr to nowa generacja
    system operacyjny czasu rzeczywistego (RTOS).
    obsługuje wiele urządzeń
    architektury. Opiera się na A
    małe jądro...
    Pobierz projekt Zephyr
  • 5
    Scons
    Scons
    SCons to narzędzie do tworzenia oprogramowania
    jest lepszą alternatywą dla
    klasyczne narzędzie do budowania „Make”.
    wszyscy znamy i kochamy. SCons jest
    wdrożył...
    Pobierz SCons
  • 6
    PSeInt
    PSeInt
    PSeInt to interpreter pseudokodu dla
    hiszpańskojęzyczni studenci programowania.
    Jego głównym celem jest bycie narzędziem do
    nauka i zrozumienie podstaw
    koncepcja...
    Pobierz PSeInt
  • więcej »

Komendy systemu Linux

Ad