GoGPT Best VPN GoSearch

favicon do OnWorks

Mixup-CIFAR10 download for Linux

Free download Mixup-CIFAR10 Linux app to run online in Ubuntu online, Fedora online or Debian online

This is the Linux app named Mixup-CIFAR10 whose latest release can be downloaded as mixup-cifar10sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

Download and run online this app named Mixup-CIFAR10 with OnWorks for free.

Siga estas instruções para executar este aplicativo:

- 1. Baixe este aplicativo em seu PC.

- 2. Entre em nosso gerenciador de arquivos https://www.onworks.net/myfiles.php?username=XXXXX com o nome de usuário que você deseja.

- 3. Carregue este aplicativo em tal gerenciador de arquivos.

- 4. Inicie o emulador OnWorks Linux online ou Windows online ou emulador MACOS online a partir deste site.

- 5. No sistema operacional OnWorks Linux que você acabou de iniciar, acesse nosso gerenciador de arquivos https://www.onworks.net/myfiles.php?username=XXXXX com o nome de usuário que deseja.

- 6. Baixe o aplicativo, instale-o e execute-o.

Confusão-CIFAR10


Ad


DESCRIÇÃO

mixup-cifar10 is the official PyTorch implementation of “mixup: Beyond Empirical Risk Minimization” (Zhang et al., ICLR 2018), a foundational paper introducing mixup, a simple yet powerful data augmentation technique for training deep neural networks. The core idea of mixup is to generate synthetic training examples by taking convex combinations of pairs of input samples and their labels. By interpolating both data and labels, the model learns smoother decision boundaries and becomes more robust to noise and adversarial examples. This repository implements mixup for the CIFAR-10 dataset, showcasing its effectiveness in improving generalization, stability, and calibration of neural networks. The approach acts as a regularizer, encouraging linear behavior in the feature space between samples, which helps reduce overfitting and enhance performance on unseen data.



Recursos

  • Simple, easily extensible codebase for research and experimentation
  • Based on the original ICLR 2018 publication results
  • Compatible with PyTorch and GPU-accelerated training
  • Demonstrates significant gains in generalization and robustness
  • Trains neural networks on convex combinations of inputs and labels
  • Implementation of mixup data augmentation for CIFAR-10 classification


Linguagem de Programação

Python


Categorias

Bibliotecas de redes neurais

This is an application that can also be fetched from https://sourceforge.net/projects/mixup-cifar10.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.


Servidores e estações de trabalho gratuitos

Baixar aplicativos Windows e Linux

Comandos Linux

Ad




×
Anúncios
❤ ️Compre, reserve ou compre aqui — sem custos, ajuda a manter os serviços gratuitos.