This is the Windows app named ELF (Extensive Lightweight Framework) whose latest release can be downloaded as ELFsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named ELF (Extensive Lightweight Framework) with OnWorks for free.
Siga estas instruções para executar este aplicativo:
- 1. Baixe este aplicativo em seu PC.
- 2. Entre em nosso gerenciador de arquivos https://www.onworks.net/myfiles.php?username=XXXXX com o nome de usuário que você deseja.
- 3. Carregue este aplicativo em tal gerenciador de arquivos.
- 4. Inicie qualquer emulador on-line OS OnWorks a partir deste site, mas um emulador on-line melhor do Windows.
- 5. No sistema operacional OnWorks Windows que você acabou de iniciar, acesse nosso gerenciador de arquivos https://www.onworks.net/myfiles.php?username=XXXXX com o nome de usuário que deseja.
- 6. Baixe o aplicativo e instale-o.
- 7. Baixe o Wine de seus repositórios de software de distribuição Linux. Depois de instalado, você pode clicar duas vezes no aplicativo para executá-lo com o Wine. Você também pode experimentar o PlayOnLinux, uma interface sofisticada do Wine que o ajudará a instalar programas e jogos populares do Windows.
Wine é uma forma de executar software Windows no Linux, mas sem a necessidade de Windows. Wine é uma camada de compatibilidade do Windows de código aberto que pode executar programas do Windows diretamente em qualquer desktop Linux. Essencialmente, o Wine está tentando reimplementar o suficiente do Windows do zero para que possa executar todos os aplicativos do Windows sem realmente precisar do Windows.
SCREENSHOTS
Ad
ELF (Estrutura Leve e Extensiva)
DESCRIÇÃO
ELF (Extensive, Lightweight, and Flexible) is a high-performance platform for reinforcement learning research that unifies simulation, data collection, and distributed training. A C++ core provides fast environments and concurrent actors, while Python bindings expose simple APIs for agents, replay, and optimization loops. It supports both single-agent and multi-agent settings, with batched stepping and shared-memory queues that keep GPUs saturated during training. ELF introduced widely used reference systems, most notably ELF OpenGo, demonstrating at-scale self-play with strong analysis tooling and public checkpoints. Its design emphasizes reproducibility: deterministic seeds, logging, and evaluation harnesses make large-scale experiments trackable and comparable. Because the platform is modular—envs, samplers, learners, and collectors—researchers can drop in new environments or algorithms without re-architecting the pipeline.
Recursos
- C++ simulation core with Python bindings for fast RL loops
- Distributed actor–learner architecture with shared-memory queues
- Support for single- and multi-agent environments and batched stepping
- Reproducible training with logging, evaluation, and checkpointing
- Reference implementations including the ELF OpenGo self-play system
- Pluggable envs, replay buffers, and learners for rapid experimentation
Linguagem de Programação
C + +
Categorias
This is an application that can also be fetched from https://sourceforge.net/projects/elf.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.