This is the Linux app named Gemma in PyTorch whose latest release can be downloaded as gemma_pytorchsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Gemma in PyTorch with OnWorks for free.
Urmați aceste instrucțiuni pentru a rula această aplicație:
- 1. Ați descărcat această aplicație pe computer.
- 2. Introduceți în managerul nostru de fișiere https://www.onworks.net/myfiles.php?username=XXXXX cu numele de utilizator pe care îl doriți.
- 3. Încărcați această aplicație într-un astfel de manager de fișiere.
- 4. Porniți emulatorul online OnWorks Linux sau Windows online sau emulatorul online MACOS de pe acest site web.
- 5. Din sistemul de operare OnWorks Linux pe care tocmai l-ați pornit, accesați managerul nostru de fișiere https://www.onworks.net/myfiles.php?username=XXXXX cu numele de utilizator dorit.
- 6. Descărcați aplicația, instalați-o și rulați-o.
SCREENSHOTS
Ad
Gemma în PyTorch
DESCRIERE
gemma_pytorch provides the official PyTorch reference for running and fine-tuning Google’s Gemma family of open models. It includes model definitions, configuration files, and loading utilities for multiple parameter scales, enabling quick evaluation and downstream adaptation. The repository demonstrates text generation pipelines, tokenizer setup, quantization paths, and adapters for low-rank or parameter-efficient fine-tuning. Example notebooks walk through instruction tuning and evaluation so teams can benchmark and iterate rapidly. The code is organized to be legible and hackable, exposing attention blocks, positional encodings, and head configurations. With standard PyTorch abstractions, it integrates easily into existing training loops, loggers, and evaluation harnesses.
Categorii
- PyTorch implementations and configs for Gemma model variants
- Ready-to-use generation, tokenization, and checkpoint loading
- Drop-in modules compatible with common PyTorch stacks
- Example notebooks for tuning and evaluation
- Quantization and inference optimization paths
- Parameter-efficient fine-tuning adapters and examples
Limbaj de programare
Piton
Categorii
This is an application that can also be fetched from https://sourceforge.net/projects/gemma-in-pytorch.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.