This is the Windows app named CFNet whose latest release can be downloaded as cfnetsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named CFNet with OnWorks for free.
Urmați aceste instrucțiuni pentru a rula această aplicație:
- 1. Ați descărcat această aplicație pe computer.
- 2. Introduceți în managerul nostru de fișiere https://www.onworks.net/myfiles.php?username=XXXXX cu numele de utilizator pe care îl doriți.
- 3. Încărcați această aplicație într-un astfel de manager de fișiere.
- 4. Porniți orice emulator online OS OnWorks de pe acest site, dar mai bun emulator online Windows.
- 5. Din sistemul de operare Windows OnWorks pe care tocmai l-ați pornit, accesați managerul nostru de fișiere https://www.onworks.net/myfiles.php?username=XXXXX cu numele de utilizator dorit.
- 6. Descărcați aplicația și instalați-o.
- 7. Descărcați Wine din depozitele de software ale distribuțiilor Linux. Odată instalat, puteți apoi să faceți dublu clic pe aplicație pentru a le rula cu Wine. De asemenea, puteți încerca PlayOnLinux, o interfață elegantă peste Wine, care vă va ajuta să instalați programe și jocuri populare Windows.
Wine este o modalitate de a rula software-ul Windows pe Linux, dar fără a fi necesar Windows. Wine este un strat de compatibilitate Windows open-source care poate rula programe Windows direct pe orice desktop Linux. În esență, Wine încearcă să reimplementeze suficient Windows de la zero, astfel încât să poată rula toate acele aplicații Windows fără a avea nevoie efectiv de Windows.
CFNet
Ad
DESCRIERE
CFNet is the official implementation of End-to-end representation learning for Correlation Filter based tracking (CVPR 2017) by Luca Bertinetto, Jack Valmadre, João F. Henriques, Andrea Vedaldi, and Philip H. S. Torr. The framework combines correlation filters with deep convolutional neural networks to create an efficient and accurate visual object tracker. Unlike traditional correlation filter trackers that rely on hand-crafted features, CFNet learns feature representations directly from data in an end-to-end fashion. This allows the tracker to be both computationally efficient and robust to appearance changes such as scale, rotation, and illumination variations. The repository provides pre-trained models, training code, and testing scripts for evaluating the tracker on standard benchmarks. By bridging the gap between correlation filters and deep learning, CFNet provides a foundation for further research in real-time object tracking.
Categorii
- Implements CFNet tracker from CVPR 2017
- End-to-end learning of correlation filter representations
- Combines efficiency of correlation filters with robustness of CNNs
- Pre-trained models and evaluation scripts included
- Training code provided for reproducing results
- Suitable for real-time visual object tracking research
Limbaj de programare
MATLAB
Categorii
This is an application that can also be fetched from https://sourceforge.net/projects/cfnet.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.