GoGPT Best VPN GoSearch

Favicon OnWorks

LLMs-from-scratch download for Windows

Free download LLMs-from-scratch Windows app to run online win Wine in Ubuntu online, Fedora online or Debian online

This is the Windows app named LLMs-from-scratch whose latest release can be downloaded as LLMs-from-scratchsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

Download and run online this app named LLMs-from-scratch with OnWorks for free.

Urmați aceste instrucțiuni pentru a rula această aplicație:

- 1. Ați descărcat această aplicație pe computer.

- 2. Introduceți în managerul nostru de fișiere https://www.onworks.net/myfiles.php?username=XXXXX cu numele de utilizator pe care îl doriți.

- 3. Încărcați această aplicație într-un astfel de manager de fișiere.

- 4. Porniți orice emulator online OS OnWorks de pe acest site, dar mai bun emulator online Windows.

- 5. Din sistemul de operare Windows OnWorks pe care tocmai l-ați pornit, accesați managerul nostru de fișiere https://www.onworks.net/myfiles.php?username=XXXXX cu numele de utilizator dorit.

- 6. Descărcați aplicația și instalați-o.

- 7. Descărcați Wine din depozitele de software ale distribuțiilor Linux. Odată instalat, puteți apoi să faceți dublu clic pe aplicație pentru a le rula cu Wine. De asemenea, puteți încerca PlayOnLinux, o interfață elegantă peste Wine, care vă va ajuta să instalați programe și jocuri populare Windows.

Wine este o modalitate de a rula software-ul Windows pe Linux, dar fără a fi necesar Windows. Wine este un strat de compatibilitate Windows open-source care poate rula programe Windows direct pe orice desktop Linux. În esență, Wine încearcă să reimplementeze suficient Windows de la zero, astfel încât să poată rula toate acele aplicații Windows fără a avea nevoie efectiv de Windows.

SCREENSHOTS

Ad


LLM-uri de la zero


DESCRIERE

LLMs-from-scratch is an educational codebase that walks through implementing modern large-language-model components step by step. It emphasizes building blocks—tokenization, embeddings, attention, feed-forward layers, normalization, and training loops—so learners understand not just how to use a model but how it works internally. The repository favors clear Python and NumPy or PyTorch implementations that can be run and modified without heavyweight frameworks obscuring the logic. Chapters and notebooks progress from tiny toy models to more capable transformer stacks, including sampling strategies and evaluation hooks. The focus is on readability, correctness, and experimentation, making it ideal for students and practitioners transitioning from theory to working systems. By the end, you have a grounded sense of how data pipelines, optimization, and inference interact to produce fluent text.



Categorii

  • Stepwise implementations of tokenizer, attention, and transformer blocks
  • Clear Python notebooks and scripts designed for learning and tinkering
  • Training and sampling loops that expose the full data and compute flow
  • Explorations of scaling choices, regularization, and evaluation metrics
  • Minimal dependencies to keep the math and code transparent
  • Serves as a foundation for extending to larger models and custom datasets


Limbaj de programare

Piton


Categorii

Modele lingvistice mari (LLM)

This is an application that can also be fetched from https://sourceforge.net/projects/llms-from-scratch.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.


Servere și stații de lucru gratuite

Descărcați aplicații Windows și Linux

Comenzi Linux

Ad




×
publicitate
❤️Cumpără, rezervă sau cumpără aici — gratuit, contribuind la menținerea serviciilor gratuite.