This is the Windows app named TimeSformer whose latest release can be downloaded as TimeSformersourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named TimeSformer with OnWorks for free.
Urmați aceste instrucțiuni pentru a rula această aplicație:
- 1. Ați descărcat această aplicație pe computer.
- 2. Introduceți în managerul nostru de fișiere https://www.onworks.net/myfiles.php?username=XXXXX cu numele de utilizator pe care îl doriți.
- 3. Încărcați această aplicație într-un astfel de manager de fișiere.
- 4. Porniți orice emulator online OS OnWorks de pe acest site, dar mai bun emulator online Windows.
- 5. Din sistemul de operare Windows OnWorks pe care tocmai l-ați pornit, accesați managerul nostru de fișiere https://www.onworks.net/myfiles.php?username=XXXXX cu numele de utilizator dorit.
- 6. Descărcați aplicația și instalați-o.
- 7. Descărcați Wine din depozitele de software ale distribuțiilor Linux. Odată instalat, puteți apoi să faceți dublu clic pe aplicație pentru a le rula cu Wine. De asemenea, puteți încerca PlayOnLinux, o interfață elegantă peste Wine, care vă va ajuta să instalați programe și jocuri populare Windows.
Wine este o modalitate de a rula software-ul Windows pe Linux, dar fără a fi necesar Windows. Wine este un strat de compatibilitate Windows open-source care poate rula programe Windows direct pe orice desktop Linux. În esență, Wine încearcă să reimplementeze suficient Windows de la zero, astfel încât să poată rula toate acele aplicații Windows fără a avea nevoie efectiv de Windows.
SCREENSHOTS
Ad
TimeSformer
DESCRIERE
TimeSformer is a vision transformer architecture for video that extends the standard attention mechanism into spatiotemporal attention. The model alternates attention along spatial and temporal dimensions (or designs variants like divided attention) so that it can capture both appearance and motion cues in video. Because the attention is global across frames, TimeSformer can reason about dependencies across long time spans, not just local neighborhoods. The official implementation in PyTorch provides configurations, pretrained models, and training scripts that make it straightforward to evaluate or fine-tune on video datasets. TimeSformer was influential in showing that pure transformer architectures—without convolutional backbones—can perform strongly on video classification tasks. Its flexible attention design allows experimenting with different factoring (spatial-then-temporal, joint, etc.) to trade off compute, memory, and accuracy.
Categorii
- Spatiotemporal transformer attention for video modeling
- Variants: divided spatial/temporal attention and joint attention schemas
- PyTorch reference implementation with pretrained weights and scripts
- Ability to reason about long-range temporal dependencies globally
- Configurable parameters for patch size, frames, embedding dimension, and head count
- Support for fine-tuning across video classification and recognition benchmarks
Limbaj de programare
Piton
Categorii
This is an application that can also be fetched from https://sourceforge.net/projects/timesformer.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.