This is the Linux app named DomainBed whose latest release can be downloaded as DomainBedsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named DomainBed with OnWorks for free.
Следуйте этим инструкциям, чтобы запустить это приложение:
- 1. Загрузил это приложение на свой компьютер.
- 2. Введите в нашем файловом менеджере https://www.onworks.net/myfiles.php?username=XXXXX с желаемым именем пользователя.
- 3. Загрузите это приложение в такой файловый менеджер.
- 4. Запустите онлайн-эмулятор OnWorks Linux или Windows или онлайн-эмулятор MACOS с этого веб-сайта.
- 5. В только что запущенной ОС OnWorks Linux перейдите в наш файловый менеджер https://www.onworks.net/myfiles.php?username=XXXXX с желаемым именем пользователя.
- 6. Скачайте приложение, установите его и запустите.
СКРИНШОТЫ
Ad
DomainBed
ОПИСАНИЕ
DomainBed is a PyTorch-based research suite created by Facebook Research for benchmarking and evaluating domain generalization algorithms. It provides a unified framework for comparing methods that aim to train models capable of performing well across unseen domains, as introduced in the paper In Search of Lost Domain Generalization. The library includes a wide range of well-known domain generalization algorithms, from classical baselines such as Empirical Risk Minimization (ERM) and Invariant Risk Minimization (IRM) to more advanced techniques like Domain Adversarial Neural Networks (DANN), Adaptive Risk Minimization (ARM), and Invariance Principle Meets Information Bottleneck (IB-ERM/IB-IRM). DomainBed also integrates multiple standard datasets—including RotatedMNIST, PACS, VLCS, Office-Home, DomainNet, and subsets from WILDS—allowing consistent experimentation across image classification tasks.
Особенности
- Comprehensive PyTorch suite for domain generalization research and benchmarking
- Implements 25+ algorithms including ERM, IRM, DANN, Fish, and more
- Includes diverse domain generalization datasets such as PACS, DomainNet, and WILDS subsets
- Supports reproducible model selection methods and evaluation protocols
- Automates large-scale training sweeps and hyperparameter optimization
- Provides detailed result collection and LaTeX-compatible reporting utilities
Язык программирования
Питон
Категории
This is an application that can also be fetched from https://sourceforge.net/projects/domainbed.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.