This is the Linux app named MoCo v3 whose latest release can be downloaded as moco-v3sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named MoCo v3 with OnWorks for free.
Следуйте этим инструкциям, чтобы запустить это приложение:
- 1. Загрузил это приложение на свой компьютер.
- 2. Введите в нашем файловом менеджере https://www.onworks.net/myfiles.php?username=XXXXX с желаемым именем пользователя.
- 3. Загрузите это приложение в такой файловый менеджер.
- 4. Запустите онлайн-эмулятор OnWorks Linux или Windows или онлайн-эмулятор MACOS с этого веб-сайта.
- 5. В только что запущенной ОС OnWorks Linux перейдите в наш файловый менеджер https://www.onworks.net/myfiles.php?username=XXXXX с желаемым именем пользователя.
- 6. Скачайте приложение, установите его и запустите.
СКРИНШОТЫ
Ad
MoCo v3
ОПИСАНИЕ
MoCo v3 is a PyTorch reimplementation of Momentum Contrast v3 (MoCo v3), Facebook Research’s state-of-the-art self-supervised learning framework for visual representation learning using ResNet and Vision Transformer (ViT) backbones. Originally developed in TensorFlow for TPUs, this version faithfully reproduces the paper’s results on GPUs while offering an accessible and scalable PyTorch interface. MoCo v3 introduces improvements for training self-supervised ViTs by combining contrastive learning with transformer-based architectures, achieving strong linear and end-to-end fine-tuning performance on ImageNet benchmarks. The repository supports multi-node distributed training, automatic mixed precision, and linear scaling of learning rates for large-batch regimes. It also includes scripts for self-supervised pretraining, linear classification, and fine-tuning within the DeiT framework.
Особенности
- Compatible with ImageNet and standard vision benchmarks for transfer learning
- Configurable via command-line flags with scalable hyperparameters and batch settings
- Integrated scripts for self-supervised pretraining, linear evaluation, and DeiT fine-tuning
- Achieves strong ImageNet results (e.g., 74.6% linear top-1 on ResNet-50, 83.2% fine-tuned ViT-B)
- Supports large-scale multi-GPU distributed training with mixed precision
- PyTorch implementation of self-supervised MoCo v3 for ResNet and ViT models
Язык программирования
Питон
Категории
This is an application that can also be fetched from https://sourceforge.net/projects/moco-v3.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.