GoGPT Best VPN GoSearch

Значок OnWorks

CFNet download for Windows

Free download CFNet Windows app to run online win Wine in Ubuntu online, Fedora online or Debian online

This is the Windows app named CFNet whose latest release can be downloaded as cfnetsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

Download and run online this app named CFNet with OnWorks for free.

Следуйте этим инструкциям, чтобы запустить это приложение:

- 1. Загрузил это приложение на свой компьютер.

- 2. Введите в нашем файловом менеджере https://www.onworks.net/myfiles.php?username=XXXXX с желаемым именем пользователя.

- 3. Загрузите это приложение в такой файловый менеджер.

- 4. Запустите любой онлайн-эмулятор OS OnWorks с этого сайта, но лучше онлайн-эмулятор Windows.

- 5. В только что запущенной ОС Windows OnWorks перейдите в наш файловый менеджер https://www.onworks.net/myfiles.php?username=XXXXX с желаемым именем пользователя.

- 6. Скачайте приложение и установите его.

- 7. Загрузите Wine из репозиториев программного обеспечения вашего дистрибутива Linux. После установки вы можете дважды щелкнуть приложение, чтобы запустить его с помощью Wine. Вы также можете попробовать PlayOnLinux, необычный интерфейс поверх Wine, который поможет вам установить популярные программы и игры для Windows.

Wine - это способ запустить программное обеспечение Windows в Linux, но без Windows. Wine - это уровень совместимости с Windows с открытым исходным кодом, который может запускать программы Windows непосредственно на любом рабочем столе Linux. По сути, Wine пытается заново реализовать Windows с нуля, чтобы можно было запускать все эти Windows-приложения, фактически не нуждаясь в Windows.

CFNet


Ad


ОПИСАНИЕ

CFNet is the official implementation of End-to-end representation learning for Correlation Filter based tracking (CVPR 2017) by Luca Bertinetto, Jack Valmadre, João F. Henriques, Andrea Vedaldi, and Philip H. S. Torr. The framework combines correlation filters with deep convolutional neural networks to create an efficient and accurate visual object tracker. Unlike traditional correlation filter trackers that rely on hand-crafted features, CFNet learns feature representations directly from data in an end-to-end fashion. This allows the tracker to be both computationally efficient and robust to appearance changes such as scale, rotation, and illumination variations. The repository provides pre-trained models, training code, and testing scripts for evaluating the tracker on standard benchmarks. By bridging the gap between correlation filters and deep learning, CFNet provides a foundation for further research in real-time object tracking.



Особенности

  • Implements CFNet tracker from CVPR 2017
  • End-to-end learning of correlation filter representations
  • Combines efficiency of correlation filters with robustness of CNNs
  • Pre-trained models and evaluation scripts included
  • Training code provided for reproducing results
  • Suitable for real-time visual object tracking research


Язык программирования

MATLAB


Категории

Машинное обучение

This is an application that can also be fetched from https://sourceforge.net/projects/cfnet.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.


Бесплатные серверы и рабочие станции

Скачать приложения для Windows и Linux

Команды Linux

Ad




×
Реклама
❤️Совершайте покупки, бронируйте или заказывайте здесь — никаких затрат, что помогает поддерживать бесплатность услуг.