This is the Linux app named Gin Config whose latest release can be downloaded as gin-configv0.1-alphasourcecode.zip. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Gin Config with OnWorks for free.
Follow these instructions in order to run this app:
- 1. Downloaded this application in your PC.
- 2. Enter in our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.
- 3. Upload this application in such filemanager.
- 4. Start the OnWorks Linux online or Windows online emulator or MACOS online emulator from this website.
- 5. From the OnWorks Linux OS you have just started, goto our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.
- 6. Download the application, install it and run it.
SCREENSHOTS
Ad
Gin Config
DESCRIPTION
Gin Config is a lightweight and flexible configuration framework for Python built around dependency injection. It enables developers to manage complex parameter hierarchies—particularly common in machine learning experiments—without relying on boilerplate configuration classes or protos. By decorating functions and classes with @gin.configurable, Gin allows their parameters to be overridden using simple configuration files (.gin) or command-line bindings. Users can define default parameter values, scoped configurations, and modular references to functions, classes, or instances, resulting in highly composable and dynamic experiment setups. Gin is particularly popular in TensorFlow and PyTorch projects, where researchers and developers need to tune numerous interdependent parameters across models, datasets, optimizers, and training pipelines.
Features
- Dependency injection–based configuration for Python functions and classes
- Parameter overrides via .gin config files or command-line bindings
- Scoped configurations for managing multiple instances (e.g., GANs, multi-model systems)
- Configurable references for passing functions, classes, or instances dynamically
- Hierarchical configuration for complex experiment graphs
- TensorFlow (gin.tf) and PyTorch (gin.torch) integrations
Programming Language
Python, Unix Shell
Categories
This is an application that can also be fetched from https://sourceforge.net/projects/gin-config.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.
